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Abstract
Traditional learning theory has developed models that can accurately predict and describe the
course of learned behavior. These “psychological process” models rely on hypothetical constructs
that are usually thought to be not directly measurable or manipulable. Recently, and mostly in
parallel, the neural mechanisms underlying learning have been fairly well elucidated. The
argument in this essay is that we can successfully uncover isomorphisms between process and
mechanism and that this effort will help advance our theories about both processes and
mechanisms. We start with a brief review of error-correction circuits as a successful example.
Then we turn to the concept of stimulus elements, where the conditional stimulus is hypothesized
to be constructed of a multitude of elements only some of which are sampled during any given
experience. We discuss such elements with respect to how they explain acquisition of associative
strength as an incremental process. Then we propose that for fear conditioning, stimulus elements
and basolateral amygdala projection neurons are isomorphic and that the activational state of these
“elements” can be monitored by the expression of the mRNA for activity-regulated cytoskeletal
protein (ARC). Finally we apply these ideas to analyze recent data examining ARC expression
during contextual fear conditioning and find that there are indeed many similarities between
stimulus elements and amygdala neurons. The data also suggest some revisions in the
conceptualization of how the population of stimulus elements is sampled from.
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Well into the last century, learning theorists have been developing models of the
psychological processes underlying associative learning. These provide rules of how specific
experiences change “associative strength” over the course of learning, and these rules
provide powerful descriptions of both simple and complex forms of conditioning (Bush &
Mosteller, 1951; Hull, 1940; Mackintosh, 1975; Pearce & Hall., 1980; Rescorla & Wagner,
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1972). These theories typically rely on several hypothetical constructs that, while not
directly measurable, enhance the explanatory power of the theory (e.g., associative strength).
More recently there have been explosive advances in our knowledge about the neural
mechanisms required for learning (Nicoll & Malenka, 1999). For example, we know that
glutamate’s action on NMDA receptors at a set of synapses supports long-term potentiation
of synaptic efficacy by increasing excitatory synaptic transmission at those synapses. It
seems that the next step in developing our understanding of learning is to ask what, if any,
isomorphisms exist between process and mechanism. This cross-level translation would
likely be synergistic and drive each class of models (process and mechanism) beyond
current understanding. Indeed, it would not be surprising if once such an isomorphism was
identified it immediately suggested a modification to existing theories. Below we briefly
review fear-conditioning data where there has been success in identifying such an
isomorphism (error correction), and then introduce a hypothesis for isomorphisms relating to
learning theories that assume that conditional stimuli are best decomposed into a set of
primitive elements.

Error-Correction: An example isomorphism between psychological process
and neural mechanism

One example case of this synergy is the recognition that the teaching signal for conditioning
is not the reinforcer but the degree to which the reinforcer received differs from what is
typical in the current situation. Kamin (1968) first suggested that it was the surprisingness of
reinforcement, not reinforcer magnitude, that supported association formation. Then
Rescorla & Wagner (1972) formalized this notion of surprise by saying “changes in
associative strength of a stimulus as a result of a trial can be well-predicted from the
composite strength resulting from all stimuli on that trial (p73).” Reinforcement then
becomes the difference between the reinforcer delivered and the composite value for
associative strength. Bolles and Fanselow (1980) elaborated these ideas into a prediction
error framework saying that “any discrepancy between expected and perceived US
(unconditional stimulus) features is fed back to alter future expectations (p293)” so that “any
error in the expectation is fed back so as to reduce future errors (p293).” Importantly, Bolles
& Fanselow (1980) described how a circuit capable of this function would look—it would
have an inhibitory feedback signal that was a conditional response (CR), thereby
proportional to associative strength that would subtract from the US experienced. Because
that model was developed to specifically explain fear conditioning, the expectancy
generated by the conditional stimulus (CS) was the expectation of pain and the perceived US
was the pain caused by the US. This specificity at once suggested a mechanism—
endogenous opioids and their descending analgesic influence was the embodiment of the
negative feedback arm of the circuit. Rapidly, empirical data were generated that extensively
supported that idea—treating animals with opioid antagonists turned them into animals that
learned proportional to the actual US rather than its surprisingness (Fanselow & Bolles,
1979; Fanselow, 1986a; Helmstetter & Fanselow, 1987; McNally et. Al., 2004; Young &
Fanselow, 1992; Zelikowsky & Fanselow, 2010). This pointed to an anatomy for this circuit
(Fanselow, 1986a; 1998) that has now received extensive delineation (Johansen et al., 2010;
McNally et al., 2011). Additionally, eyeblink learning, which uses a very different circuit
than fear conditioning, still contains a source for negative feedback that functions in a
similar manner, that is, limiting the US’s ability to drive changes in associative strength
(Fanselow, 1998; Kim et al., 1998). While still unknown, the circuitry mediating appetitive
Pavlovian conditioning is likely to have a similar negative feedback arm (Schultz &
Dickinson, 2000; Waelti et al., 2001).

Knowledge about the neural mechanisms of error correction can, in turn, provide insights
into psychological processes. One example is the finding that learning is slowed by both
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nonreinforced and weakly reinforced pre-exposure to a CS (Lubow, 1973; Hall & Pearce,
1979). Initially, it was thought that both effects were caused by similar reductions in
attention to the CS (Pearce & Hall, 1980). However, using pharmacological manipulation of
the error-correction circuit it was found that US-related error correction mechanisms account
for the slower conditioning after a shift from a weak to a strong shock but cannot account for
the slowed learning after nonreinforced CS preexposure (Young & Fanselow, 1992).

Interestingly, while the mechanisms of error-correction have yielded to such an analysis of
US processing, we still do not know if there are process-mechanism isomorphisms for the
concepts of associative strength and CS representation. These hypothetical constructs are as
key to an understanding of learning processes, as is error correction. The purpose of this
paper is to speculate about a potential isomorphism for the representation of the CS and how
that representation comes to track associative strength. Fear conditioning again holds
promise because the underlying circuitry has been fairly well characterized (Fendt &
Fanselow, 1999; Haubensak et al., 2010; Pare et al., 2004). Importantly, sensory information
about the CS is relayed to the basolateral amygdala (BLA) and substantial evidence suggests
that it is within this structure that the CS-US associations underlying fear conditioning are
formed (Fanselow & LeDoux, 1999). But first, we must briefly look at some assumptions
about the representation of the CS that have been made by learning theorists.

Stimulus-Sampling Theory
When we talk about CS we typically refer to the objective external stimulus such as a tone
or light. However, mechanistically, it is either the neural representation of that stimulus, or
what that neural representation engenders, that must change during associative learning.
Psychologists have long recognized that the objective stimulus and its neural representation
are not identical (Fechner, 1860; Weber, 1834; Stevens, 1957). One important example of
this is Edwin R. Guthrie’s (1935) suggestion that the stimulus is really a dynamic set of a
very large number of elements only a proportion of which are active at any given moment.
William Estes (1950) quantitatively formalized Guthrie’s view in his stimulus-sampling
theory. A critical aspect of the model is that a stimulus is made of a large set of primitive
elements and only a subset (sample) of elements can be active at any point in time.
Therefore, every time a stimulus is experienced it is represented by a somewhat different set
of elements. With each experience a new sample is taken randomly, with replacement, from
the total population of elements. Two experiences are similar to the extent that they contain
common elements. This elemental view of associative learning has been incorporated into
many associative models because it has tremendous explanatory power especially for
phenomena such as acquisition, discrimination and generalization, core aspects of any
learning theory (Wagner, 2003; 2008; Rudy & Wagner, 1975; Rescorla, 1976; Rescorla &
Wagner, 1972). As illustration, generalization of responding to stimuli in a manner
proportional to their similarity is easily explained by the degree to which the finite
populations of elements representing the individual stimuli share common elements.

A second key aspect to the Guthrie-Estes elemental view is that associations are formed in
an all-or-none manner to the individual elements. If, on a given trial, an element is present, it
may enter into association but if it is not present it cannot enter into association. Thus an
incremental learning curve occurs because on trial one, associations are formed only to the
limited set elements present. On trial two, a randomly determined set of elements is
sampled, of which only a small proportion of which were present on the first trial. Those
resampled elements drive a small CR and the new elements sampled can now become
associated with the trial’s outcome (e.g., shock in fear conditioning). With each trial a
greater proportion of the entire population of elements will have entered into association and
therefore a stronger and more consistent CR will emerge.
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Is there something in the nervous system that corresponds to a stimulus element? Can we in
some way track whether an element has been sampled in the sense offered by Estes? If
possible, we would have another critical lynchpin for understanding the neural basis of
learning. Additionally, being able to track a stimulus element during learning would provide
data that could test and sharpen our models of the psychological processes describing
association formation. Indeed, measurement of such elements could potentially be
isomorphic with associative strength. Below we entertain one potential neural candidate for
a stimulus element in the context of the learning curve. Our first consideration is behavioral;
we need to select an appropriate learning task for analysis, which would be one where there
are clear increments in learning over trials. Next, we speculate on the neural basis of a
stimulus element and then examine how those elements behave.

The incremental nature of fear conditioning
Above we argued, using the vantage of stimulus-sampling theory, that an animal shows
increasing amounts of fear to a CS as conditioning proceeds because a greater proportion of
the total population of elements for the CS enters into association. Whether incremental
learning curves represent continuous variation in an individual’s associative strength or are
an artifact of averaging multiple subjects with different learning rates is a debate that has
raged as long as there has been learning theory (Krechevsky, 1932; 1938; Lashley, 1929;
Spence, 1940). Indeed, some have challenged the entire approach of breaking down learning
into trials altogether and suggested that the formation of a representation of the environment
is abrupt and what changes with experience is confidence in the certainty of the
representation (Gallistel, 1990; 2007). Others have suggested that there are several factors
that shape learning curves other than CS-US pairings (i.e., trials; Gottlieb, 2008). It is likely
that there are different answers to this question that depend on the specific task and even
method of training (Riley, 1968). If our goal is to track stimulus elements during acquisition
of fear, first we must show that learning in this task is incremental.

Most presentations of the acquisition of fear conditioning show curves composed of group
averages, which do not allow one to determine whether or not an individual ‘s learning is
incremental or stepwise. Gottlieb & Rescorla (2010), using a within-subjects design found
little evidence that the number of Light-Shock pairings was an important factor when they
examined acquisition of fear. However, clear differences emerged when testing of these rats
was carried out during extinction of the CS-US association. Gottlieb & Rescorla (2010)
therefore suggested that the failure to see an effect of the number of CS-US pairings during
acquisition was a sensitivity issue. There are two factors that may have reduced Gottlieb &
Rescorla’s (2010) sensitivity to observing trial-by-trial changes during acquisition. First, all
training and testing occurred in the same context. Such tests naturally confound conditioning
to the explicit CS (light) and the conditioning context. While they reported responding to the
CS in terms of a ratio of CS to preCS responding (suppression ratio) such measures do not
eliminate the confound that baseline conditional responding creates for accurate assessment
of fear (Jacobs et al., 2010). Second, and possibly more important, the measure of fear was
suppression of a food reinforced lever press. The motivation of these food-deprived rats may
have masked expression of small changes in fear that occur from trial-to-trial.

To avoid these sensitivity issues, we wished to use the simplest example of fear acquisition
for these experiments. In some ways, contextual fear conditioning is the simplest case of
acquisition as there are only two stimuli, the CS (context) and the US (shock). Auditory
conditioning adds a CS and thereby complicates the picture because we know that CSs
interact with each other (e.g., they contribute to Rescorla & Wagner’s composite stimulus,
and they enter into a Rescorla-Wagner-like competition, where overshadowing between
stimuli influences the degree to which a stimulus will reach its asymptotic conditioning
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value). Additionally, rather than leverpress suppression in food-deprived rats, we examined
freezing in nondeprived animals. The test of the incremental nature of learning would be
whether individual animals adopt intermediate levels of responding during the course of
learning. Below we show that learning appears incremental with two very different
procedures, one in rats and one in mice.

Figure 1 presents data from an experiment conducted for another purpose. Rats received a
single session of 15 (1 mA, 1.0 sec) shocks occurring randomly over 90 min. The data
present freezing for 5 rats during one minute periods prior to each shock. Freezing is a
reflection of the context-shock association in this sort of situation. As is typical, the average
learning curve negatively accelerates reaching asymptotic freezing levels near 100% in
about 4 trials. All rats contributing to the curve adopted intermediate levels of performance
prior to asymptote, except one who went from 0 to 100 after one shock. Importantly, on trial
two, these 4 rats (C–F) had a level of freezing that was greater than the first trial but was less
than the asymptotic level indicating that freezing behavior was acquired in an incremental
manner.

Figure 2A–E asks a similar question of mice using a one trial a day procedure carried out
over 4 days. Mice were placed in a context once a day for 3 min. Every session ended in a
single shock (0.65mA, 2.0 sec). Each line on an individual graph represents a different trial.
The composite graph (Fig 2E) suggests that each successive trial caused an increase in
freezing. Individual curves clearly indicate that all mice adopted intermediate levels of
freezing prior to the 4th trial. Indeed, on trial 2, every mouse froze more than it did on trial
one but less than trial 3. Again, the acquisition of contextual fear was graded. Thus,
incremental learning is a robust behavioral phenomenon that can be observed both within
and across species. Such profound behavioral effects lead one to question the neural analogs
for the hypothetical stimulus elements that account for such incremental learning.

The Neurobiology of Stimulus Elements
First, we must preface our attempt to define a stimulus element in neurobiological terms by
acknowledging Estes’ insistence that the elements were entirely hypothetical and never
directly measurable (Estes, 1950). For Estes, this was a mathematically tractable approach,
as the terms of theory could be expressed as a proportion of the entire set of elements even if
the set size itself was unknown. Here we will violate this hypothetical assumption with
reckless abandon and develop a hypothesis based on the assumption that we can not only
count the elements but also know whether or not they were sampled.

The first question is where should we look for stimulus elements? If we are interested in the
ability for the CS to acquire a fear CR the obvious place to look is the BLA.

The next step is to identify the population of elements for a given CS. Stimulus sampling
theory assumes that the total population of elements for a given stimulus is fixed and that
these elements are in one of two states, sampled or not. Estes (1950) also assumed that, “in
the familiar buzz-shock conditioning experiment, for example, S c (the set of elements for
the CS) would represent the population of stimulus elements emanating from the sound
source (p284).” Some BLA neurons meet these 3 requirements. There are BLA neurons that
receive synaptic input from the CS (i.e., they emanate from the sound source; e.g.,
Romanski et al., 1993), and they are potentially countable. Action potentials, which drive
the neurons output, are all-or-none (i.e., they are in one of two states). Given the absence of
adult neurogenesis in the amygdala, the number of BLA neurons is more-or-less fixed.

We will further limit the population of elements to BLA pyramidal cells. First, because they
are the excitatory projection neurons that communicate with the downstream structures that
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drive behavior. Second, the high tonic firing rate of inhibitory neurons does not correspond
with something that is probabilistically activated and only at times when the CS is presented.
This should not be taken to mean that BLA interneurons do not play an important role; they
clearly regulate BLA physiology and fear-related behavior (Ehrlich et al., 2009). They
certainly serve to coordinate the firing of principle neurons (Ryan et al., 2012). One role
interneurons may play within the current schema is to control the probability of an element
(i.e., principle neuron) being sampled (i.e., activated).

In Estes’ theory, the population of elements for the CS was not constrained by the US. This
worked for stimulus sampling theory because it assumed that any CS element could become
associated with any response element. This “equipotentiality” assumption has been
contradicted empirically in that not every US can become associated with every CS, some
CS-US combinations work well (Taste-Illness, Tone-Shock) and some work poorly (Tone-
Illness, Taste-Shock, Light- Shock; Chung et al., 2011; Garcia & Koelling, 1966; Newton et
al., 2004). A good argument can be made that when translating stimulus elements into
neurons, a US-related constraint must be placed on what neurons contribute to the
population because an element that is never activated by the US cannot be part of the
population representing the CS-US association. In this way, Estes’ original idea of stimulus
sampling is constrained to elements that have the potential to neurally converge with the US.
The BLA contributes to several types of Pavlovian conditioning, including appetitive
conditioning and taste aversion learning (Chung et al., 2011). Separate populations of BLA
neurons contribute to these different types of learning and they appear randomly distributed
rather than topographically organized throughout the region (Chung et al., 2011). If a shock
US cannot activate a food-related neuron, that neuron has no chance in entering into a CS-
Shock association and thus cannot be thought of as part of the relevant population of
elements. However, at this point in time, it is technically difficult to determine whether an
individual neuron has the potential to be activated by both the CS and the US. Therefore, we
will define the total population of elements as the population of BLA neurons and recognize
that this is likely an overestimate that occurs because we are including some neurons in our
analysis that the shock can not activate.

Stimulus sampling in the basolateral amygdala
Now that we have limited the set of elements to specific principle neurons in the BLA, the
most critical question emerges. How do we know that an element was sampled during
stimulus exposure? In stimulus sampling theory an element can hold one of two states,
sampled or not, so we are looking for something binary. To be able to relate to stimulus
sampling theory a large number of elements, ideally the entire population, would be tracked
with some measure of neural activity that corresponds to being sampling. Here we propose
that transcription of the immediate early gene coding for activity-regulated cytoskeletal
protein (Arc), as identified through fluorescent in situ hybridization (FISH), is a useful
indicator of this activational status.

The selection of Arc is based on several features of this immediate early gene. First, it is
expressed in pyramidal neurons but not interneurons. Arc is an effector gene whose RNA is
transported from the nucleus to the dendrites, where it regulates postsynaptic changes
necessary for both learning and synaptic plasticity (Bramham et al., 2008). It has an
advantage over electrophysiology for our purposes, because electrophysiology at its best can
record only from a few hundred neurons, while post-mortem processing of the Arc signal
can potentially assess the entire population of relevant neurons. The advantage of Arc over
other immediate early genes such as cfos is twofold. First, as mentioned above it is limited
to projection neurons. Second, and most important, the expression and movement of Arc
mRNA from the nucleus to the cytoplasm has a distinct and rapid time course that allows
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identification of neural activity limited to brief epochs (Figure 3). Almost immediately upon
relevant neural activity Arc signal can be identified as transcription foci inside the nuclei of
neurons (Pevzner et al., 2012). If that neuron does not remain active transcription stops, and
the transcription foci disappear 15 min later (Vazdarjanova et al., 2002). The newly
transcribed Arc mRNA moves into the cytoplasm and can be observed as a penumbra that
surrounds the nucleus starting about 20 min after the initial activity (Guzowski & Worley,
2001). Therefore, when examining images on a confocal microscope, any neuron with
transcription foci (nuclear) was active 3 sec to 5 minutes before the brains were taken. Any
neuron showing a cytoplasmic signal surrounding the nucleus was active 20–25 minutes
ago. Neurons active at both time points will be positive for Arc in both compartments. If one
strategically places two events with respect to what cellular compartment should contain
Arc, one can determine what neurons were active during the first, the second or both events
(Figure 3).

This imaging technique is called cellular compartmental analysis of temporal activity using
FISH (catFISH). Using this technique, Guzowski et al. (1999) gave rats two 5 min
exposures to a context. The exposures were separated by 20 min and were either to the same
or different environments. When the environments were the same about 40% of
hippocampal CA1 neurons showed double labeling with very few showing signal in only
one compartment. On the other hand, rats going into different compartments showed only
15% double labeling. The greater overlap in activation for the same condition is consistent
with the idea that each environment activates a unique, but partially overlapping, set of
elements, which is a core assumption of stimulus sampling theory. Another aspect of
Guzowski et al’s finding is that the number of neurons responding to both contexts (15%)
was what would be expected by chance if both contexts randomly sampled 40% of CA1
neurons. Thus Arc is behaving in a manner that matches what would be expected from a
stimulus element being sampled. Guzowski’s work focused on the hippocampus rather than
the amygdala. While the hippocampus is important for building a representation of the
context, it does not represent the context-shock association; hence our focus on the BLA.
Importantly, using Arc catFISH, Barot et al (2008; 2009), found that BLA neurons respond
to both CS and US.

Therefore, we used catFISH to examine the change in Arc expression as learning progresses
(Zelikowsky et al., submitted). Since catFISH is limited to two time points, we can only look
at two points along the learning curve. Both in theory (assuming a negatively accelerated
learning curve) and based on the data described above (Figures 1 and 2) the greatest change
in behavior should occur between the first two trials. Therefore, we looked at one trial
contextual fear conditioning, when the first event for catFISH was a 5 min context exposure
that ended with a single shock (Zelikowsky et al., submitted). The second event was a 5 min
test in the same context, 20 min later. An ideal control group should have the same CS
(context) and US (shock) exposure but in a manner that should not foster a CS-US
association. There is extensive data on the immediate shock deficit, which shows that a
shock given simultaneously with placement in the chamber does not result in learning a
context-shock association, so this condition provided an ideal control group for our purposes
(Fanselow, 1986b; 1990). Figure 3A shows the design and its relationship to the catFISH
protocol. Freezing behavior scored during the test provided evidence that the delayed-shock
rats acquired an association, freezing at 36% (±4.4%0), while the immediate-shock rats did
not, freezing at 1.0% (± 0.7%). Indeed, there was no overlap in the distribution of freezing
scores between the two groups (U (8,8)=64, p<.001).

Immediately after behavioral testing, brains were removed for catFISH processing (Figure
3B). Quantification of the Arc data for the immediate-shock control group is in figure 3C.
For the immediate shock rats each context exposure activated Arc in about 14% of the
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neurons. This was split almost equally between cells activated just during the first exposure
(8%, Cytoplasmic) or just during the second exposure (6%, Nuclear) with very few neurons
expressing Arc to both events (0.3%, double). The tendency in this control group seems to
be that if a BLA neuron is active on the first exposure (during conditioning) it is less likely
to be reactivated on the second exposure.

A totally different pattern emerged in the conditioned (Delayed-shock) rats (Figure 3D).
There were no neurons activated only during the training event (0%, cytoplasmic); every
neuron that was active during the effective context-US pairing reactivated during test
(8.3%). Thus while both conditions activated a similar total number of neurons during
training (8.4%) the likelihood of reactivation at test was far greater in the group that
acquired fear. Interestingly, during the test both groups recruited a new population of
neurons (5.6%, nuclear only). The BLA differentially reactivates neurons based on their past
learning history.

Discussion
Arc expression patterns indicated that amygdala neurons are activated by exposure to a
novel environment. If that exposure is effectively reinforced, as it was in the delayed shock
condition, there is complete reactivation of those previously reinforced neurons. Such
reactivation may reflect increased attention to the cues that predict shock (Mackintosh,
1975) or possibly the formation of associations between stimulus elements that were
concurrently active (e.g., McLaren et al., 1989; Wagner, 1981). However, it is important to
note that the amygdala only resampled elements that were reinforced. In the immediate
shock group, activation of neurons during the first exposure reduced the likelihood of
reactivation on the second exposure.

These BLA data are strikingly different than what happens in hippocampus with 2
placements in the same environment. There, the majority of activated cells show double
labeling regardless of whether the experience was reinforced or not (Guzowski et al., 1999,
Zelikowsky et al., submitted). This is consistent with the hippocampus rapidly forming an
integrated, Gestalt-like representation of the current environment (Fanselow, 2000). The
hippocampus provides this information to the amygdala (Maren et al., 1995) so that it can be
used as a CS to associate with the US. One complication for this view is that it suggests that
while the hippocampus’ representation of a place is configural, the amygdala’s
representation of context-US associations is elemental. The difference in the nature of
processing between the amygdala and hippocampus may reflect a difference in what each
structure evolved to accomplish. The hippocampus creates a detailed representation of a
place so that it can be successfully remembered and navigated. On the other hand, the
amygdala attaches affective salience to the best predictors of biologically significant events.

This distinction between the hippocampus as a configural processor, but the amygdala as an
elemental processor for Pavlovian conditioning harkens back to Sutherland and Rudy’s
configural model of the hippocampus (1990). In Pavlovian conditioning elemental error-
correction processes will tend to limit associative strength to the most salient and/or best
predictors (e.g., Rescorla & Wagner, 1972). The nature of episodic memory, which has been
strongly linked with the hippocampus, is quite different (Bierley et al., 1983; Eldrige et al.,
2000; Tulving & Thompson, 1973). Episodic memory is rich in detail containing aspects of
place, time and specific events. It is defined by having all of these components included in
the same representation. Rather than being inclusive, Pavlovian representations are
exclusive and limited to either the best predictor or the most salient of equally predictive
stimuli. Contexts, which are comprised of individual elements that are not particularly
predictive, would not fare well in the competitive environment of error correction (Rescorla,
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1972). The hippocampus may overcome this lack of salience of the contextual elements by
binding them together into a more salient whole that is better able to compete with explicit
cues such as a tone. Certainly, further research is needed to see how the hippocampal
representation of place is transformed to the amygdala’s representation of that place being
dangerous.

Incremental Learning
Our freezing data strongly suggest that fear learning is an incremental process (Figures 1
and 2). Based on the molecular imaging data we saw that a conditioning trial recruits BLA
neurons into a network that is responsive to the CS. So a possibility is that as learning
progresses, additional neurons are recruited to the memory representation. As more neurons
are recruited a stronger fear response can be generated. Ultimately, asymptote will be
reached when all the neurons that have the potential to encode the CS-US association are
recruited into the representational network. To determine if individual neurons are
reactivated as part of a memory representation a within-subjects approach is necessary. The
catFISH technique allows such within-subjects contrast but is limited to two time points. We
chose to image the first 2 trials of acquisition because that is the point at which we observed
the largest increment in behavior (Figure 1 & 2). Future research should compare other
points along the learning curve. Techniques that allow retrospective analysis of neuronal
activity at multiple time points would facilitate such efforts.

One can make some interesting extrapolations from these data. For example, during the
second context exposure, both groups activated (sampled) a number of neurons that had not
been activated previously. These neurons are available to encode the outcome of trial 2. For
the conditioned rats, if this happens on subsequent trials with a similar outcome, a larger and
larger percentage of the population of BLA neurons would become associated with shock.
The learning curve increments as a greater proportion of the total population of elements
(neurons) becomes associated with shock. This is exactly the pattern that stimulus sampling
theory predicts. It also suggests that the number of BLA neurons activated may be
isomorphic with associative strength.

In marked contrast to the conditioned animal’s perfect (100%) reactivation of neurons there
was virtually no reactivation of neurons in the controls (0.3%). If this happens for many
successive nonreinforced trials it may leave few neurons to activate if a shock were to occur,
meaning that nonreinforced trials could impede subsequent conditioning. This would
provide a ready explanation of the ability for CS pre-exposure to retard learning that is
referred to as latent inhibition (Lubow, 1973). However, it should be noted that latent
inhibition has been difficult to demonstrate with contextual cues (Young & Fanselow,
1992).

Implications for Stimulus Sampling Theory
Earlier we suggested that discovering an isomorphism between psychological process and
neural mechanism might immediately suggest a modification to existing theories. And
indeed, if one accepts the premise that BLA neurons are stimulus elements and Arc indicates
recent sampling of those elements, the catFISH data suggest changes in the assumptions of
stimulus sampling theory. For example, Estes assumed that the probability of sampling an
element did not change from trial to trial. Within the amygdala, however, reinforcement of a
neuron led to an increase in the likelihood of being resampled (indicated by high double
labeling in the conditioned group) and/or a decrease in the probability of being sampled
when there was no outcome (indicated by little double labeling in the immediate shock
group). Thus the random sampling of elements does not occur with replacement—
resampling is altered based upon past experience. Our two epochs are somewhat close to
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each other so we cannot tell if these altered probabilities of resampling are permanent or
dissipate with time. In this regard, Wagner has proposed an elemental model that
specifically states that once a stimulus element has been activated it temporally becomes
refractory to reactivation and that administration of a new stimulus (e.g., shock) may reduce
this refractory period (Wagner, 1981; Wagner et al., 1973).

A fundamental assumption in Estes theory is that that on any given trial some elements are
sampled (active) and some are not. When we suggest that a BLA neuron is isomorphic with
a stimulus element we can ask the question if there is some mechanistic account of why one
element is sampled and one is not. Recent work by the Josselyn and Silva laboratories
suggest that levels of the transcription factor cAMP response element-binding protein
(CREB) determine whether or not a BLA neuron will get incorporated into a memory by
enhancing the neuron’s excitablility (Josselyn, 2010; Zhou et al., 2009; Won & Silva, 2008).
Importantly, they showed that increasing CREB in a neuron increases the probability that
the neuron will express Arc (Han et al., 2007). Thus CREB levels may predispose a neuron
to be sampled and Arc can be used to assess whether or not the neuron was sampled.

Typically Psychological Process models of learning are cast in generalist terms; they are
assumed to work more-or-less identically in all learning systems. The work of Bolles (e.g.,
Bolles, 1970), Garcia (Garcia & Koeling (1966)) and others (Timberlake & Fanselow, 1994)
argued that a better understanding comes when we think of a type of learning as specialized
for its functional context. For example, Bolles moved our understanding of fear and
avoidance from a general reinforcement process view to one of fear as a defensive behavior
system (Bolles, 1972; 1975). It could be argued that the reconceptualization of learning into
separable systems serving different functions is what allowed the neuroscience of fear to
develop the way it did (LeDoux, 2012). Indeed, the finding that different types of learning
(e.g., fear, eyeblink, reward) rely on different neural circuits (e.g., amygdala, cerebellum,
striatum, respectively) offers direct support for the specialist position. Having knowledge of
the structure and function of the circuit led us to identify the amygdala as a place to look for
something that corresponded to Guthrie and Estes hypothetical stimulus elements. In turn,
cellular imaging of a putative neural mechanism for this hypothetical construct led to the
possible refinement of the psychological process model. This back and forth between
process and mechanistic accounts holds great promise for deepening our understanding of
learning generally. This special issue shows that this exciting effort is underway.
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Figure 1.
Rats received 15 shocks spaced randomly over 90 min (see Rau et al., 2005 for a full
description of the procedure). The data presented are for time spent freezing during a 1 min
period prior to each shock, which is a measure of context fear acquisition. Panel A presents
the average acquisition curve of 5 rats. Panels D–F show the data of each individual subject
that contributed to the composite curve of Panel A.
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Figure 2.
Mice (c57Bl6) were placed in a context once a day for 4 Days. Three min after placement in
the chamber they received a shock (see Cushman et al., 2012 for a more complete
description). Each figure shows freezing during 10 sec bins taken through the 3 min context
exposure. Each of the 4 trials is plotted separately on the same graph. Panels A–D show
individual mice and Panel E shows the composite curve for those 4 animals.
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Figure 3.
Panel A: The catFISH technique (cellular compartment analysis of temporal activity by
fluorescence in situ hybridization) takes advantage of the unique timecourse of Arc mRNA
as it translocates from nucleus (0–5 min after activity) to cytoplasm (20 min after activity) to
quantify the entire population of neurons activated by the first behavioral episode
(cytoplasmic), a second episode (nuclear), or both (cytoplasmic and nuclear). Comparing
rats shocked immediately after placement in a context (Immediate) with rats given time to
form a contextual representation (Delay) is a method to demonstrate associative fear
memory formation while controlling for the effects of the shock (see text for data). Panel B:
A confocal image taken from an immediate (left) and a delayed shock rat showing BLA
nuclei in green (sytox) and Arc mRNA in red. Panels C and D: Venn diagrams indicating the
proportion of neurons active at the first event (training), second event (testing), or both
(overlap in circles). In the BLA of the immediate group, independent populations of neurons
were active with each contextual experience (Panel C). In contrast, the Delay group has
almost complete reactivation of the first cohort of neurons, with the addition of a new
population of units during recall (Panel D). These two populations in the learning group
have characteristics of Estes’ theory of stimulus sampling, and may relate to new aspects of
the context sampled during the second experience.
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