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SUMMARY

Chronic social isolation causes severe psychological
effects in humans, but their neural bases remain
poorly understood. 2 weeks (but not 24 hr) of social
isolation stress (SIS) caused multiple behavioral
changes in mice and induced brain-wide upregula-
tion of the neuropeptide tachykinin 2 (Tac2)/neuroki-
nin B (NkB). Systemic administration of an Nk3R
antagonist prevented virtually all of the behavioral
effects of chronic SIS. Conversely, enhancing NkB
expression and release phenocopied SIS in group-
housed mice, promoting aggression and converting
stimulus-locked defensive behaviors to persistent re-
sponses. Multiplexed analysis of Tac2/NkB function
in multiple brain areas revealed dissociable, region-
specific requirements for both the peptide and its
receptor in different SIS-induced behavioral changes.
Thus, Tac2 coordinates a pleiotropic brain state
caused by SIS via a distributedmode of action. These
data reveal the profound effects of prolonged social
isolation on brain chemistry and function and suggest
potential new therapeutic applications for Nk3R
antagonists.

INTRODUCTION

Internal states of arousal, motivation, and emotion exert a major

influence on how the brain processes sensory information to

control behavior (Berridge, 2004; Bargmann, 2012; LeDoux,

2012; Anderson and Adolphs, 2014; Anderson, 2016). An impor-

tant class of internal states is that produced by exposure to psy-

chogenic stressors (McEwen et al., 2015). Chronic stress in

particular has profound, long-lasting effects on both physical

and mental health (Selye, 1936; House et al., 1988; Sapolsky,

1996; Cacioppo and Hawkley, 2009; Kessler et al., 2009; Holt-

Lunstad et al., 2010, 2015; Cacioppo et al., 2014). However,

most animal models of chronic stress entail repeated administra-
tion of acute stressors and hence contain within them a reprieve

from the stressor (Katz et al., 1981). Thus, although the stress is

repeatedly administered, it is intermittent.

Chronic social isolation stress (SIS) provides one of the few

paradigms in which a stressor can be applied continuously for

extended periods (days or weeks) (Hilakivi et al., 1989; Weiss

et al., 2004). SIS is widespread in humans and has detrimental ef-

fects on health (House et al., 1988). However, its neurobiological

basis remains poorly understood. For example, there is conflicting

evidenceonwhetherornotprolongedSISchronically activates the

HPA axis (Hawkley et al., 2012; Cacioppo et al., 2015). A recent

study implicated dorsal raphe dopaminergic neurons inmediating

effects of relatively brief (24 hr) social isolation in mice (Matthews

et al., 2016), but a subsequent study described a broader role for

these neurons in promoting arousal (Cho et al., 2017).

Neuropeptides, most notably CRH, have been implicated in

mediating stress responses in a variety of systems (reviewed in

Kormos and Gaszner [2013]; Witkin et al. [2014]; Kash et al.

[2015]; Chen [2016]), but the logic underlying their actions is

not yet clear (Figures 1A–1D). Guided by our previous studies

of aggression in Drosophila (Wang et al., 2008; Asahina et al.,

2014), we have investigated a potential role for tachykinins in

mediating SIS-induced aggression in mice (Maggio, 1988).

Studies of the neuropeptide tachykinin 2 (Tac2)/neurokinin B

(NkB) in the central amygdala have implicated the peptide in

fear memory consolidation (Andero et al., 2014, 2016), suggest-

ing a role in fear learning and expression. Here, we report a

broader and unanticipated role for Tac2/NkB as an important

peptide mediator of the effects of chronic SIS. Tac2/NkB is

dramatically upregulated by SIS throughout the brain and coor-

dinates a pervasive change in brain state, affecting not only

aggression but also many other behaviors via distributed local

actions in multiple brain regions.

RESULTS

Chronic SIS Produces Widespread Effects on Multiple
Defensive Behaviors
Prolonged SIS is known to promote multiple behavioral effects,

including increased aggression and persistent responses to
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threats, in both humans and animal models (Wiberg and Grice,

1963; Valzelli, 1969, 1973; Weiss et al., 2004; Matsumoto et al.,

2005; Arrigo and Bullock, 2008; An et al., 2017). As an initial

step, therefore, we examined the effects of 2 weeks of SIS in

wild-type C57Bl6/N mice using multiple behavioral assays:

aggression in the resident-intruder (RI) assay (Thurmond,

1975), innate freezing to an overhead looming disk (LD) (Yilmaz

and Meister, 2013), learned freezing to a conditioned tone (2.8

kHz) (Fanselow, 1980), and reactivity to a footshock (0.7mA) (Fig-

ures 1E–1I and S1B–S1D). SIS produced a robust increase in

offensive aggression toward a submissive intruder, compared

to non-aggressive group-housed controls (Figure 1F), confirming

previous studies (Valzelli, 1969; Matsumoto et al., 2005; Toth

et al., 2011). It also caused persistent freezing to both the LD

and tone (Figures 1G and 1H, ‘‘post,’’ red bars), in contrast to

GH controls where freezing terminated with stimulus offset.

However, the magnitude of freezing to both the overhead LD

and the conditioned tone was unaffected by SIS (Figures 1G

and 1H, ‘‘during’’), as was the rate and asymptotic value of

conditioned fear acquisition (Figure S1A). SIS mice also showed

significantly enhanced reactivity to a footshock (Figure 1I),

increased freezing to a threatening ultrasonic stimulus (USS)

(Mongeau et al., 2003) (Figures 1J and 1K), increased tail rattling

to the LD (Figure S1E), increased sensitivity to sub-threshold

acoustic startle stimuli (Figure S1I), and a decreased latency to

flinch to a mild footshock (Figure S1H).

SIS mice were also tested for anxiety-like behavior in the

open-field test (OFT) and the elevated plus maze (EPM) (Figures

1L–1N and S1F). They showed a modest but significant reduc-

tion in time spent in the center of the OFT arena, without a

change in velocity (Figure 1M), but were no different from GH

mice on the EPM test (Figure 1N). However, SIS mice showed

an increased propensity to jump off the EPM platform (Fig-

ure S1F). Lastly, SISmice spent less time interacting with a novel

mouse in a social interaction assay (although their latency to

initially approach the mouse was reduced; Figure S1J) but

more time closer to a predator (rat) (Figure S1G). Collectively,

these findings demonstrate that SIS alters behavioral responses

to a variety of stimuli (summarized in Figure 1O). This profile ap-

pears different from anxiety (Blanchard et al., 2003; Bourin et al.,

2007), consistent with earlier studies inmice (Hilakivi et al., 1989).

Importantly, when we isolated mice for just 24 hr, we failed to

detect any of the behavioral alterations we observed following
Figure 1. Prolonged SIS Alters Behavior

(A–D) Alternativemodels for peptidergic control of an internal state influencingmul

etc.). Control could be achieved by multiple (A) or a single (B–D) neuropeptide (pQ

(RX, RY, etc.) for the peptides or on a single peptide-responsive ‘‘hub’’ region (C).

control different behaviors in different peptide-responsive regions (gray circles).

(E–N) A comparison between wild-type (WT) group-housed (GH) control mice and

schematics). (F) Aggression (resident-intruder test). (G and H) Freezing response

looming disk (G) or conditioned tone (H). (I) Reactivity to footshock following ton

Anxiety assays: open field test (OFT) (M) and elevated plus maze (EPM) test (N).

(O) Summary of results. Red up-pointing arrows indicate isolation-induced inc

behavioral responding. n.c., no change.

In this and in all subsequent figures, data are represented as mean ± SEM. *p < 0

multiple comparisons were applied for post hoc comparisons; bars without ast

additional statistical information for this and subsequent figures can be found in

See also Figure S1.
2 weeks of SIS (Figures S3A–S3E), distinguishing this paradigm

from the effects of short-term isolation studied previously (Mat-

thews et al., 2016).

Chronic SIS Causes Widespread Upregulation of Tac2
Transcription
In Drosophila, an unbiased screen of peptidergic neurons identi-

fied DTK (Drosophila tachykinin)-expressing neurons and the

DTK peptide as required for social isolation-induced aggression

(Asahina et al., 2014). To determine whether this function might

be conserved, we investigated the role of tachykinins in SIS. In

rodents, the tachykinin gene family comprises Tac1 and Tac2

(Maggio, 1988). Tac1 encodes the peptides substance P (SP),

as well as neurokinin A (NkA); Tac2 encodes neurokinin B

(NkB). These peptides bind with the highest affinities to the

G-protein-coupled Nk1, Nk2, and Nk3 receptors, respectively

(Figure 2A) (Ebner et al., 2009). Tac1 and Tac2 are expressed

in a variety of brain regions implicated in emotion and social

behavior (Figure 2B) (Culman and Unger, 1995).

To determine whether Tac gene expression is influenced by

SIS, we crossed Tac2-IRES-Cre or Tac1-IRES-Cre knockin

mice (Tasic et al., 2016) to a Cre-reporter mouse (line Ai6) ex-

pressing zsGreen (Madisen et al., 2010). Double-heterozygous

mice were socially isolated for 2 weeks or group housed prior

to sacrifice. Strikingly, freshly dissected brains from isolated

Tac2-Cre; Ai6 (but not Tac1-Cre; Ai6) mice exhibited enhanced

cortical reporter expression that could be detected by the naked

eye under ambient lighting (Figure S2A). Histology confirmed a

widespread increase in zsGreen expression, in both males (Fig-

ures 2C and S2B) and females (Figure S2C). Upregulation was

evident in the anterior dorsal bed nucleus of the stria terminalis

(dBNSTa), central nucleus of the amygdala (CeA), dorsomedial

hypothalamus (DMH), and the anterior cingulate cortex (ACC)

(Figures S2A and S2B). Cell-specific markers indicated that

most zsGreen expression occurred in neuronal cells (Fig-

ure S2D). Increased zsGreen expression was also detected in

peripheral endocrine tissues, such as the pancreas, testes,

and submandibular gland (data not shown).

Similar results were obtained using a different Cre reporter

mouse, Ai14 (Madisen et al., 2010) expressing tdTomato (Fig-

ure S2E), indicating that the induction was not a peculiarity of

the Ai6 line. Importantly, no such change was observed in SIS

Tac1-Cre; Ai6 mice (Figures 2D and S2A). These data suggest
tiple behaviors controlled by different brain regions (gray circles, beh. A, beh. B,

, pX, etc.) directly acting on multiple regions (A, B, and D) expressing receptors

In (B) the same peptide (pX) is expressed in different regions (blue circles) that

isolated (SIS) mice (n = 8 mice/condition) in the assays indicated (E, J, and L,

s during (‘‘during’’) or immediately after (‘‘post’’) presentations of an overhead

e test. (K) Freezing to a 17–20 kHz ultrasonic sound stimulus (USS). (M and N)

reases in behavior; orange down-pointing arrows indicate isolation-reduced

.05, **p < 0.01, ***p < 0.001. Pairwise contrasts were tested and corrections for

erisks did not reach significance (p > 0.05). ANOVA’s, F values, t values, and

Table S1.
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Figure 2. SIS Causes an Increase in Tac2 Expression

(A) Illustration summarizing tachykinin ligand-receptor specificities.

(B) Tac2 (top panels) and Tac1 (bottom panels) mRNA expression (coronal sections) revealed by in situ hybridization (ISH) (data from Mouse Brain Atlas, Allen

Institute of Brain Science; Tac2, Exp. 72339556; Tac1, Exp.1038). Abbreviations: dBNSTa, antero-dorsal bed nucleus of the stria terminalis; MH,medial habenula;

CeA, central amygdala; DMH, dorsomedial hypothalamus; ARH, arcuate nucleus; LHA, lateral hypothalamus; CP, caudate putamen; MeA, medial amygdala;

VMH, ventral medial hypothalamus; and ZI, zona incerta.

(C and D) Coronal sections of expression of zsGreen in GH versus 2-week-isolated Tac2-IRES-Cre (C) or Tac1-IRES-Cre (D) mice crossed to Ai6 (zsGreen) Cre

reporter mice.

(E and F) Quantification of Tac2 (E) or Tac1 (F) mRNAs by qRT-PCR in the indicated regions hand-dissected from the brains of GH or SIS mice (n = 4 mice/

condition).

(G–K) Tac2mRNA detected by FISH in GH or SISmice in the indicated regions (n = 3–4mice/condition, 1–4 sections/region/mouse); representative sections from

dBNST (G), DMH (H), CeA (I), ACC (J), and HPC (K) are shown. Dashed lines indicate regions of interest (ROIs) used for quantification.

(legend continued on next page)
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that the induction of zsGreen observed in SIS mice is specific

to the Tac2Cre allele and is not a non-specific effect of SIS to in-

crease Cre-mediated recombination at the Rosa-26 locus or a

peculiarity of the zsGreen reporter.

To confirm that SIS upregulated endogenous Tac2 expres-

sion, we quantified Tac2 mRNA in selected brain regions using

qRT-PCR and RNA fluorescent in situ hybridization (FISH).

qRT-PCR indicated that SIS caused a large (�3- to 8-fold)

and significant increase in Tac2 mRNA levels in the dBNSTa,

DMH, and CeA, with trends to an increase in the ACC and dor-

sal hippocampus (dHPC) (Figure 2E). An increase in NkB pro-

tein expression was also observed in these regions by immu-

nostaining (Figure S2I). A time course revealed a gradual

increase in Tac2 mRNA from 30 min to 2 weeks of SIS (Fig-

ure S2F). No increase in Tac1 mRNA was observed following

SIS (Figures 2F and S2G).

Endogenous Tac2 mRNA upregulation was also observed by

FISH in in dBNSTa, CeA, and DMH (Figures 2G–2P). Upregula-

tion in CeA was significant in both its medial and lateral subdivi-

sions (Kim et al., 2017). The fold increase in fluorescence inten-

sity per square millimeter was much greater than the fold

increase in the number of Tac2 mRNA+ cells (Figures 2L–2P).

In contrast, the Cre reporter transgene, which integrates and

amplifies changes in expression, yielded a larger fold increase

in the number of positive cells (Figure S2B). This difference

was particularly evident in the ACC or dHPC (Figures 2J, 2K,

2O, 2P, and S2B), suggesting amplification of induction by the

Cre reporter. Despite these quantitative differences, the mRNA

data confirm that SIS upregulates endogenous Tac2 expression

in multiple brain regions.

Acute Systemic Antagonism of Nk3Rs Attenuates the
Effects of SIS
To investigate a causal role for NkB in mediating behavioral

effects of SIS, we systemically administered osanetant (Fig-

ure 3A) (Emonds-Alt et al., 1995), a specific Nk3R antagonist

that crosses the blood-brain barrier (Spooren et al., 2005).

Osanetant delivered after SIS, but 20 min prior to each test,

strongly reduced aggression enhanced by SIS (Figure 3B), but

not by sexual experience (Remedios et al., 2017) (Figures S3J

and S3K). It also attenuated persistent freezing to both the LD

and the fear-conditioned tone (Figures 3C and 3D, ‘‘post,’’ green

bars), but not acute freezing during stimulus presentation.

Osanetant also attenuated other SIS-induced behaviors

including increased shock reactivity (Figure 3E), increased tail

rattling (Figure S3G), decreased social interaction (Figure S3H)

and enhanced responding in the acoustic startle assay (Fig-

ure S3I). Thus, systemic antagonism of Nk3Rs blocked virtually

all of the measured behavioral effects of chronic SIS, while

leaving non-SIS altered behaviors intact (Figure S3K). Notably,

osanetant also blocked persistent freezing to the LD caused by

prior footshock (Figures S3L and S3M), suggesting involvement

of NkB in responses to other stressors.
(L–P) Left, average number of Tac2 mRNA+ cells/mm2 in ROIs; right, average fluo

ACC (O), and HPC (P), respectively. Fold increases in Tac2 mRNA fluorescence

expression level per cell.

See also Figure S2.
Chronic Systemic Antagonismof Nk3Rs during SISHas a
Protective Effect
To investigate whether Tac2 signaling is required during SIS,

mice were administered osanetant daily in their home cage dur-

ing the 2-week isolation period, but were then tested off-drug. To

control for carryover of the drug from the last home-cage admin-

istration into the testing period (24 hr later), an additional group

of SIS mice was given a single home-cage administration of

osanetant 24 hr prior to testing (Figure 3F).

Treatment with daily osanetant prevented SIS-enhanced

aggression (Figure 3G), persistent freezing to the LD (Figure 3H),

and persistent freezing to the fear conditioned tone (Figure 3I).

The SIS-induced increase in shock reactivity was reduced, but

not significantly (Figures 3J and 3K). Strikingly, mice that had

been treated with osanetant during SIS could be returned to

housing with their pre-isolation cagemates without any subse-

quent fighting observed, in contrast to control SIS mice which

vigorously attacked their cagemates when reintroduced to the

group (data not shown).

Nk3Rs Act in Different Brain Regions to Mediate the
Effects of SIS on Different Behaviors
Next, we asked where in the brain NkB signaling is required to

mediate the behavioral effects of SIS. The dBNSTa, DMH, and

CeA exhibited strong induction of Tac2 by SIS (Figure 2), and

also contain cells expressing Nk3Rs (Figure S4A). Since Tac2+

neurons in CeA and dBNSTa project to multiple distal targets

(Figures S4B–S4D; Table S2), as a first step, we pharmacologi-

cally inhibited Nk3Rs locally in these Tac2-expressing regions.

SIS mice received bilateral microinfusions of osanetant into a

given region 20 min prior to each behavioral test (Figure 4A).

We selected four assays—the RI assay, LD, fear conditioning,

and shock reactivity—that exhibit robust SIS-induced changes

and could be performed sequentially within the same animals

without affecting each other (as indicated by initial experiments

in which LD and fear conditioning were performed indepen-

dently) (Figures S1C and S1D).

Local infusion of osanetant in dBNSTa selectively inhibited

persistent, but not acute, freezing to both the LD and the condi-

tioned tone (Figures 4C and 4D), but had no effect on aggres-

sion (Figure 4B) or shock reactivity (Figure S4F). By contrast,

osanetant microinfused into the DMH abolished aggression

(Figure 4E), but had no effect on persistent responses to the

LD (Figure 4F) or the conditioned tone (Figure 4G), or on foot-

shock reactivity (Figure S4G). (However, DMH-infused mice

showed an increase in the latency to first orient and freeze to

the LD; Figure S4E). Lastly, osanetant infusion into the CeA

reduced acute (and thereby persistent) freezing to the innate

and conditioned threatening stimuli, as well as reactivity to

the footshock (Figures 4H–4K and S4H), but not aggression.

Infusion of osanetant into the ACC or striatum failed to yield

significant effects on SIS-induced persistent freezing to the

LD (Figures S4I and S4J).
rescence intensity/mm2 in the regions shown in dBNST (L), DMH (M), CeA (N),

intensity are greater than increases in cell number, indicating an increase in
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Figure 3. Systemic Nk3R Antagonism Attenuates Effects of SIS
(A) Experimental protocol. Following isolation, SIS or GH mice were injected (i.p.) with osanetant or vehicle and tested for the indicated behaviors (n = 6 mice/

condition).

(B–E) Osanetant blocked SIS-induced aggression (B), post-loom freezing (C), and post-tone freezing (D) and increased shock reactivity (E).

(F) Experiment to test whether osanetant delivered daily during SIS can protect against its behavioral effects. ‘‘osan last’’ indicates an additional control group

given just the last dose of osan 24 hr before testing to control for drug carryover (n = 6/condition).

(legend continued on next page)
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Region-Specific Chemogenetic Silencing of Tac2+

Neurons Blocks Distinct Behavioral Responses to SIS
To determine whether Tac2 upregulation in dBNSTa, DMH and

CeA reflected a requirement for NkB release in these structures,

we first asked whether the activity of Tac2+ neurons in these

regions was required for the effects of SIS. Tac2/c-fos dFISH

experiments revealed a significant induction of c-fos in Tac2+

cells in dBNSTa and CeA following exposure to the LD or condi-

tioned tone, but not during aggression. Conversely, Tac2+ cells

in DMH were activated during aggression, but not during threat

exposure (Figures S5A–S5D).

To determine whether silencing Tac2+ cells could prevent the

effects of SIS, Tac2-IRES-Cre mice were bilaterally injected in

dBNSTa, CeA, or DMH with a Cre-dependent adeno-associated

virus (AAV) encoding hM4DREADD (AAV2-DIO-hM4D-mCherry)

(Conklin et al., 2008). Following 3 weeks to allow viral

expression (Figure S5E) and 2 weeks of SIS, mice were tested

for SIS-induced behavioral changes 20 min after injection of

clozapine-N-oxide (CNO) or vehicle (Figure 5A).

Chemogenetic silencing of Tac2+ cells in dBNSTa, DMH, and

CeA essentially phenocopied the effect of local osanetant infu-

sions. In dBNSTa, persistent freezing responses were selectively

attenuated (Figures 5B–5D, post), while in DMH aggression was

inhibited (Figures 5E–5G), and in CeA acute freezing and shock

reactivity were suppressed (Figures 5H–5K and S5H). No effects

of CNOwere observed in control mice subjected to the same se-

ries of behavioral assays (Figures 5SI–5SN), excluding off-target

effects (Gomez et al., 2017). Thus the activity of Tac2+ neurons,

like Nk3R function, is differentially required in different brain re-

gions for different behavioral effects of SIS.

Tac2 Synthesis Is Differentially Required in dBNSTa,
CeA, and DMH
We asked next whether Tac2 synthesis was required in each of

the three brain regions studied, via targeted small hairpin RNA

interference (shRNAi)-mediated knockdown of Tac2. Mice were

injected stereotaxically in dBNSTa, DMH, or CeA with adeno-

associated viruses (AAVs) expressing small hairpin RNAs

(shRNAs), together with a CMVpromoter-driven zsGreen fluores-

cent reporter (AAV5-H1-shRNA-CMV-zsGreen). Two shRNAs

(shRNA-1 and shRNA-2) proved effective as determined by

FISH and qRT-PCR, with shRNA-2 yielding the strongest reduc-

tions in Tac2 mRNA (Figures S6E–S6G). Control mice were in-

jected with an AAV encoding an shRNA targeted to the luciferase

gene. Injections were histologically verified by zsGreen fluores-

cence. The number of zsGreen+ neurons was not significantly

different between animals injected with control versus experi-

mental shRNAs, suggesting that the reduction in the number of

Tac2 mRNA+ cells was not due to cell death (Figure S6D).

In DMH both shRNAs strongly attenuated SIS-induced

aggression, but had no significant effect on freezing (Figures
(G–J) Effect of osanetant administered during SIS on (G) aggression, (H) post-loo

(SIS-veh vs. osan during) was observed but did not reach our significance thresh

(K) Summary of results. ‘‘osan pre-test’’ indicates osanetant was given 20min prio

was given during SIS only (G–J), and not 20 min before each assay. Faint red arr

effects that were blocked by the manipulation. n.c., no change.

See also Figure S3.
6E–6G), similar to the effect of Tac2+ neuron silencing or local

infusion of osanetant in this region (Figures 4E–4G and Figures

5E–5G). Conversely, in the dBNSTa shRNA-1 strongly reduced

persistent freezing to both the LD and the conditioned tone (Fig-

ures 6C and 6D, red bars, ‘‘post’’), but had no effect on acute

freezing to the threatening stimuli (Figures 6C and 6D, red

bars, ‘‘during’’), or on SIS-induced aggression (Figure 6B).

Notably, unlike the case with Tac2+ neuron silencing and local

osanetant infusion, the stronger shRNA-2 expressed in dBNSTa

significantly reduced acute as well as persistent freezing to

both the LD and conditioned tone (Figures 6C, 6D, 6I, and 6J,

‘‘during,’’ orange bars). In CeA, Tac2 shRNA2 reduced acute

freezing during and after stimulus presentation (Figure 6I), but

had no effect on aggression (Figure 6H). The fact that local inhi-

bition of Tac2 synthesis or of Tac2+ neuronal activity yielded

similar behavioral effects (Figures 5K and 6K) supports a require-

ment for Tac2 release in the effects of SIS.

Enhancement of Tac2 Expression and Tac2+ Neuronal
Activity Mimics the Effects of SIS
The foregoing findings indicate that Tac2 is required for the

collective behavioral effects of SIS. However, because there is

baseline Tac2 expression in these regions in GH mice (Figures

2B and 2E), these data do not distinguish whether Tac2 upregu-

lation per se mediates the effects of SIS, or whether Tac2 is sim-

ply permissive. Therefore, we asked whether increasing the level

and/or release of Tac2 was sufficient to mimic any of the behav-

ioral effects of SIS, in group-housed animals.

To do this, we injected intravenously into GH Tac2-IRES-Cre

(gene-conserving) driver mice (Figure S7) Cre-dependent

vectors encoding the DREADD neuronal activator hM3D; a

Tac2 cDNA or control mCherry using the AAV serotype PHP.B,

which crosses the blood-brain barrier (Deverman et al., 2016).

Following 3 weeks to allow for viral expression, all mice

(including mCherry-expressing controls) were given CNO in their

drinking water for 2 weeks. Mice were then behaviorally tested

20 min following an intraperitoneal (i.p.) CNO injection (Fig-

ure 7A). This procedure was designed to achieve brain-wide

Tac2 overexpression and/or neuronal activation in Tac2+

cells, during both a 2-week mock SIS period, as well as during

behavioral testing.

Remarkably, combined overexpression of Tac2 and chemo-

genetic activation of Tac2+ neurons recapitulated key behavioral

effects of SIS in GH mice, including increased aggression and

persistent freezing to threats (Figures 7B–7D; summarized in Fig-

ure 7F). In contrast, increasing Tac2 expression, or activating

Tac2+ neurons, on its own was insufficient to yield SIS-like

effects in any of our assays (Figures 7B–7E, lavender and cyan

bars), as was injection of mCherry-only virus. Histological anal-

ysis confirmed expression of mCherry-tagged AAV cargo genes

in the dBNSTa, CeA, and DMH (Figures S7A–S7C) and in several
m freezing, and (I) post-tone freezing. (J) Shock reactivity; a trend to protection

old (p > 0.05).

r to each assay (B–E), but not during SIS; ‘‘osan during SIS’’ indicates osanetant

ows indicate original effects produced by SIS. Black X’s indicate SIS-induced
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Figure 4. Targeted NK3R Antagonism in

dBNSTa, DMH, or CeA Attenuates Different

Effects of SIS in a Dissociable Manner

(A) Experimental protocol. Mice were implantedwith

bilateral cannulae in dBNSTa, DMH, or CeA; iso-

lated; and given osanetant or vehicle microinfusions

(300 nl) 20 min before testing (n = 6–7/condition).

(B–J) Effect of osanetant infusion into dBNSTa (B–D),

DMH (E–G) or CeA (H–J) on indicated assays. Osa-

netant (green bars) selectively blocked persistent

freezing in dBNSTa (‘‘post’’; C and D), aggression in

DMH(E), andacute freezing inCeA (‘‘during’’; I andJ).

(K) Summary of results. Notations are the same as

those used in Figure 3K. n/a, not applicable

(secondary to lack of freezing during stimulus). n.c.,

no change. Green downward arrows indicate

manipulation-induced reduction in a behavior not

altered by SIS.

See also Figure S4.
additional regions (Figures S7D and S7E). The absence of any

effects in CNO-treated mCherry virus-injected mice rules out

off-target effects of the drug (Gomez et al., 2017).

DISCUSSION

Identification of Tac2/NkB as a Key Mediator of Brain
Responses to Chronic SIS
A large number of neuropeptides have been implicated

in stress responses, most prominently CRH (reviewed in
1272 Cell 173, 1265–1279, May 17, 2018
(Kormos and Gaszner, 2013; Kash et al.,

2015; Chen, 2016)). Prior work on the ta-

chykinins in stress has focused primarily

on Tac1/Substance P/NkA (Bilkei-Gorzo

et al., 2002; Beaujouan et al., 2004; Ebner

et al., 2004, 2008). Previous pharmacolog-

ical and genetic studies have yielded con-

flicting results regarding the direction of

NkB influences on stress responses (Ebner

et al., 2009). Motivated by our previous re-

sults in Drosophila (Asahina et al., 2014),

we identified Tac2/NkB as an important

and previously unrecognized mediator of

chronic SIS influences on the brain. The

finding that tachykinins play a role in the

control of social isolation-induced aggres-

sion in both flies and mice is consistent

with evidence supporting an evolutionary

conservation of neuropeptide function in

behavior across phylogeny (reviewed in

Bargmann [2012]; Katz and Lillvis [2014]).

It is conceivable that Tac2/NkB may play

a role in the well-known effect of solitary

confinement to increase violence in hu-

mans (Arrigo and Bullock, 2008).

CRH is considered the prototypic stress

peptide (Chen, 2016). Approximately 50%

of Tac2+ cells in dBNSTa and CeA co-ex-
press CRH (Figure S7F), raising the possibility that co-release

of CRH may play some role in effects of SIS exerted via these

structures. However, Tac2 shRNAi and osanetant injections

yielded similar effects as Tac2+ neuronal silencing, while activa-

tion of Tac2+ neurons had no effect unless a Tac2 cDNA was co-

expressed. Therefore co-release of CRH is unlikely to explain the

results of our chemogenetic manipulations of Tac2+ neuronal ac-

tivity. Nevertheless, we cannot exclude that CRHmay act genet-

ically upstream or downstream of Tac2 in these structures, to

mediate the influences of SIS. Interestingly, there was virtually
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Figure 5. TargetedChemogeneticSilencing

of Tac2+ Cells Attenuates the Effects of SIS

(A) Experimental protocol. Tac2-Cre mice were

bilaterally injected in the indicated regions with a

Cre-dependent AAV-expressing hM4DREADD-

mCherry, isolated, and injected (i.p.) with

CNO or vehicle prior to testing (n = 7–8 mice/

condition).

(B–J) Effect of vehicle or CNO on mice

expressing Tac2-hM4DREADD in dBNSTa

(B–D), DMH (E–G), or CeA (H–J) on indicated

assays. CNO blocked persistent freezing

in dBNSTa (‘‘post’’; C and D), aggression

in DMH (E), and acute freezing in CeA

(‘‘during’’; I and J).

(K) Summary of results. Notations are the

same as those used in Figure 4K. CNO had

no effect in mCherry-expressing mice (Fig-

ure S5E).

See also Figure S5.
no expression of CRH among Tac2+ neurons in DMH, where NkB

controls aggression (Figure S7F).

Our SIS paradigm differs from acute and repeated intermit-

tent stressors (e.g., footshock, restraint, forced swim) not

only in its quality but also in its extended duration and contin-

uous nature. The engagement of the Tac2/NkB system in

chronic SIS, therefore, could reflect any of these differences.

However, the fact that systemic delivery of osanetant blocked

acute footshock-induced persistent freezing in the LD assay

suggests a more general role for the peptide in responses
to stressors. A role for Tac2/NkB in

consolidation of a conditioned fear

memory in CeA has been reported (An-

dero et al., 2014), but this effect was

interpreted to reflect a role in memory

consolidation. Understanding the role

of Tac2 in other forms of chronic and

acute stress will be an interesting topic

for future studies.

Tac2/NkB Acts in a Distributed
Manner to Control Multiple
Components of the SIS Response
With few exceptions (Regev et al., 2011,

2012), most previous studies of neuro-

peptides in stress have focused on a sin-

gle brain region, stressor and/or

behavior (e.g., the BNST and anxiety as-

says; reviewed in Kash et al. [2015]), and

have used a single type of functional

perturbation (but see McCall et al.

[2015]). This, together with the variations

in stress and behavioral paradigms used

in different laboratories, makes it difficult

to synthesize studies of the same pep-

tide in different regions to understand

how a peptide acts more globally in the
brain (Kormos and Gaszner, 2013; Chen, 2016). Themultiplexed

approach used here permitted comparison of the same pertur-

bation in different brain regions, and of different perturbations in

the same brain region, using a battery of behavioral assays. This

approach revealed a distributed mode of action in which upre-

gulation of Tac2 by stress regulated different behavioral effects

of SIS in different areas. Such a distributed mechanism is

reminiscent of that played by pigment-dispersing factor (PDF)

in controlling circadian circuits in Drosophila (Taghert and

Nitabach, 2012; Dubowy and Sehgal, 2017), or roaming versus
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Figure 6. Targeted Knockdown of Tac2

Attenuates the Effects of SIS

(A) Experimental protocol. 3 weeks prior to testing,

wild-type (WT) mice were injected with an AAV-ex-

pressing shRNA-zsGreen for specific knockdown of

Tac2 (shRNA-1 or shRNA-2) or with an shRNA virus

targeting the luciferase gene (control) (n = 6–7/mice

condition) and maintained in isolation until testing.

(B–J) Effect of shRNA’s in dBNSTa (B–D), DMH

(E–G), or CeA (H–J) on indicated assays. shRNA-1

(red bars) blocked persistent freezing in dBNSTa

(‘‘post’’; C and D); aggression in DMH (E) and

freezing in CeA (I–J). shRNA-2 (orange bars) yielded

similar effects but additionally reduced acute

freezing in dBNSTa (‘‘during’’; C and D).

(K) Summary of the results. The effects of shRNA-1

(left column) and shRNA-2 (right column) are pre-

sented for each region.

See also Figure S6.
dwelling states in C. elegans (Flavell et al., 2013), and may also

explain some of the diverse functions of CRH (Regev et al.,

2011; Flandreau et al., 2012; McCall et al., 2015).

The fact that local inhibition of Tac2/NkB synthesis, Tac2+

neuronal activity and NkB receptors yielded qualitatively similar

results in each brain region is suggestive of local actions of

Tac2. In other systems, NkB acts in an autocrine or paracrine

manner on Nk3R-expressing neurons to increase their activity

(Navarro, 2013); whether this occurs in the regions studied
1274 Cell 173, 1265–1279, May 17, 2018
here is not yet clear. Importantly, our re-

sults do not rule out requirements for NkB

signaling at distal targets of Tac2+ neurons

as well. The biochemistry of Nk3R action

suggests that Tac2/NkB should increase

intracellular free calcium via an IP3/DAG

pathway (Ebner et al., 2009). In this way,

NkB could potentiate the activation of

target neurons by glutamate or other

excitatory transmitters, and/or promote

release of additional peptides.

Activation and Peptide
Overexpression in Tac2+ Neurons
Mimics the Effects of SIS
Injection of stress peptides or receptor

agonists can elicit behavioral responses

(reviewed in Koob [1999]; Bruchas et al.

[2010]; Kormos and Gaszner [2013]). How-

ever, in most studies, injection or trans-

genic overexpression of a stress peptide

does not fully mimic the behavioral effects

of stressors. For example, even CRHwhen

exogenously administered to unstressed

animals in low arousal conditions does

not produce stress-like responses

(Koob, 1999).

Using a novel experimental design, we

found that overexpression of Tac2 com-
bined with neuronal activation in Tac2+ cells, but neither manip-

ulation on its own, sufficed to mimic several of the behavioral

effects of SIS, in GH mice. This suggests that neuronal activity

may be limiting for observing behavioral effects of neuropeptide

overexpression in other systems. This may explain why overex-

pression of CRH using genetic methods produced different re-

sponses, depending on the mode and site of expression (Regev

et al., 2011, 2012; Flandreau et al., 2012; Sink et al., 2013; Kash

et al., 2015).
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G

Figure 7. Activation of Tac2+ Neurons plus Tac2 Overexpression Mimics the Effects of SIS in GH Mice

(A) Experimental protocol. GH Tac2-IRES-Cre mice were intravenously injected with Cre-dependent, human Synapsin I promoter-driven, and AAV-PHP.B-

serotyped viruses expressing the chemogenetic activator hM3DREADD, a Tac2 cDNA, both, or just mCherry (controls). Mice remained group housed (5 weeks)

with CNO-spiked drinking water provided during the final 2 weeks (for hM3DREADD activation). Mice received an injection of CNO (i.p.) 20min prior to each assay

(n = 6 mice/condition).

(legend continued on next page)
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Our experiments were enabled by a strategy that allows inde-

pendent manipulation of Tac2 expression and Tac2+ neuronal

activity, in a brain-wide, non-invasive manner in adult mice

(Deverman et al., 2016; Chan et al., 2017), without the need to

employ complex transgenic strategies (Lu et al., 2008). More

spatially and temporally resolved applications of this approach

should reveal precisely where and when enhancing NkB

signaling exerts its effects. We anticipate that this approach

will prove useful for studying other neuropeptides as well.

Increased Tac2/NkB Signaling Converts Stimulus-
Locked to Persistent Threat Responses
It was striking to observe that acute freezing responses to threats

in GH animals could be converted to persistent ones, simply by

artificially increasing Tac2 expression and release. Preliminary

data indicate that Tac2 is required for acute freezing in GH ani-

mals as well. Together, these data suggest that the upregulation

of Tac2 expression causedbySISmay serve to convert defensive

reactions to threats from transient to more enduring responses

(Figure 7H, lower). In this way, the scalable property of neuropep-

tides—their concentration can vary continuously—may be used

to promote persistence, a key component of emotion and related

internal states (Anderson and Adolphs, 2014).

With one exception (see below), manipulations of NkB signaling

in dBNSTa reduced persistent, but not acute (during stimulus)

freezing, while manipulations of CeA reduced freezing during as

well as following threat stimulus presentation. This dissociation

appears consistent with the prevailing view that CeA controls

phasic, stimulus-locked defensive responses to threats (‘‘fear’’),

while dBNSTa controls more persistent responses (‘‘anxiety’’)

(Walker et al., 2009; Kash et al., 2015). However, in dBNSTa the

more potent Tac2 shRNA-2 inhibited acute as well as persistent

freezing, while the less potent shRNA-1 only reduced post-stim-

ulus freezing. These data suggest that the effects of Tac2/NkB

signaling on acute versus enduring responses to threats are not

determined simply by the region(s) in which the neuropeptide

acts but also by the level of peptide expression and by potentially

different thresholds for neuropeptide effects in each area (Fig-

ure7H).However,wecannotexclude thepossibility that reciprocal

connections between CeA and dBNST (Dong et al., 2001; Dong

and Swanson, 2006a, 2006b) may also contribute to the partially

overlapping shRNAi phenotypes we observed (Figure 7G).

Nk3RAntagonists as a Potential Treatment for Isolation-
Related Stress
Social isolation is well known to promote poor health, clinical

psychiatric symptoms, and increased mortality in humans
(B–E) Effect of eachmanipulation on the indicated assays. All animals were treated

both the hM3DREADD and Tac2 cDNA viruses showed an ‘‘SIS-like’’ phenotype (

post-tone freezing (D). (E) Reactivity to the footshock.

(F) Summary of results. Blue arrows indicate effects of perturbations to generate

(G) Schematic illustrating how Tac2 and its receptor (Nk3R) may control SIS-ind

(H) Upper: illustration summarizing LOF and GOF effects on behavior. Lower: mod

and different dose dependencies of freezing on Tac2 levels in dBNSTa versus CeA

�2 (stronger; upper graphs) in the two regions (see Figure 6). Themodel also illustr

(CeA-dependent) to persistent (dBNSTa-dependent) freezing. Gray dot, baseline l

(Figures 2L and 2N).

See also Figure S7.
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(Cacioppo and Hawkley, 2009; Umberson and Montez, 2010;

Cacioppo et al., 2015; Holt-Lunstad et al., 2015). Osanetant

and several other Nk3R antagonists have been tested in clinical

trials as therapies for schizophrenia, bipolar, and panic disorder

(Spooren et al., 2005). These drugs were well tolerated but aban-

doned for lack of efficacy (Griebel and Holsboer, 2012). The pro-

found effect of osanetant to prevent and attenuate an SIS-

induced deleterious brain state suggests that Nk3R antagonists

may merit re-examination as potential treatments for mood dis-

orders caused by extended periods of social isolation (or other

stressors) in humans, and in domesticated animals as well.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-proNKB Invitrogen PA1-16745

Rabbit polyclonal anti-NeuN Millipore ABN78

Chicken polyclonal anti-PLP Millipore AB15454

Rabbit polyclonal anti-NFIA Deneen B., Baylor N/A

Goat anti-rabbit, Alexa Fluor 594 Invitrogen R37117

Goat anti-chicken, Alexa Fluor 594 Invitrogen A-11042

Bacterial and Virus Strains

AAV2-EF1a-DIO-hM4D(Gi)-mCherry UNC Vector Core N/A

AAV2-EF1a-DIO-mCherry UNC Vector Core N/A

AAV1-CAG-FLEX-eGFP UNC Vector Core N/A

AAV5.H1.Tac2-shRNA1.CMV.ZsGreen.SV40 This paper N/A

AAV5.H1.Tac2-shRNA2.CMV.ZsGreen.SV40 This paper N/A

AAV5.H1.shRLuc.CMV.ZsGreen.SV40 This paper N/A

AAVPHP.B-hSyn-Tac2-P2A-mCherry This paper N/A

AAVPHP.B-hSyn-Tac2-P2A-GFP This paper N/A

AAVPHP.B-hSyn-DIO-hM3D(Gq)-mCherry This paper N/A

AAVPHP.B -hSyn-DIO-mCherry This paper N/A

Chemicals, Peptides, and Recombinant Proteins

DAPI Sigma D9542

Vectashield Vector Labs H-1000

Fluoro-Gel with Tris Buffer Electron Microscopy Sciences 17985-10

Clozapine N-oxide Enzo NS105-0005

Osanetant Axon 1533; SR 142801

Senktide Tocris 1068

Digoxigenin-labeled Tac2 RNA probe This paper N/A

Digoxigenin-labeled Cfos RNA probe This paper N/A

Digoxigenin-labeled CRH RNA probe This paper N/A

DNP-labeled Tac2 RNA probe This paper N/A

DIG RNA Labeling Mix Roche 11277073910

DNP-11-UTP PerkinElmer NEL555

T7 RNA Polymerase Roche 10881767001

Anti-digoxigenin-POD Roche 11207733910

Anti-DNP antibody, HRP conjugate PerkinElmer FP1129

Anti-DNP antibody, Alexa Fluor 488 conjugate Invitrogen A11097

Sheep serum Sigma S3772

TSA Blocking Reagent PerkinElmer FP1020

TSA Plus Biotin Kit PerkinElmer NEL749A001KT

TSA Plus DNP (HRP) kit PerkinElmer NEL747B001KT

Avidin/biotin blocking kit Vector Labs SP-2001

TSA Plus DNP (HRP) System PerkinElmer NEL747A001KT

Streptavidin Alexa Fluor 488 conjugate Invitrogen S11223

Streptavidin Alexa Fluor 594 Jackson ImmunoResearch 016-580-084

Proteinase K NEB P8107S

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Yeast tRNA Sigma R8759

Calf Thymus DNA Invitrogen 15633019

Dextran sulfate Sigma D8906

Denhardt’s Solution 50x Sigma D2532

PrimeSTAR Max DNA Polymerase Takara R045A

GeneArt Seamless Cloning and Assembly Kit Invitrogen A13288

RNAlater QIAGEN 76106

RNAeasy Plus Mini Kit QIAGEN 74134

TURBO DNase Thermo Fisher AM2238

Murine RNase Inhibitor NEB M0314L

Dynabeads MyOne Silane Thermo Fisher 37002D

LightCycler 480 SYBR Green Roche 4887352001

Superscript III Reverse Transcriptase Life Technologies 18080093

Tac1 Primer Integrated DNA Technologies http://www.idtdna.com/pages

Tac2 Primer Integrated DNA Technologies http://www.idtdna.com/pages

GAPDH Primer Integrated DNA Technologies http://www.idtdna.com/pages

18 s Primer Integrated DNA Technologies http://www.idtdna.com/pages

Experimental Models: Organisms/Strains

C57BL/6N Charles River N/A

BALB/c Charles River N/A

Tac2-Cre N/A

Tac1-Cre N/A

Ai6-zsGreen reporter Madisen et al., 2010 N/A

Ai14-tdTomato reporter Madisen et al., 2010 N/A

Recombinant DNA

pAAV.H1.Tac2-shRNA1.CMV.ZsGreen.SV40 This paper N/A

pAAV.H1.Tac2-shRNA2.CMV.ZsGreen.SV40 This paper N/A

pAAV.H1.shRLuc.CMV.ZsGreen.SV40 U Penn Vector Core PL-C-PV1781

pAAV-GFP Cell Biolabs Inc AAV-400

pAAV-hSyn-Tac2-P2A-mCherry This paper N/A

pAAV-hSyn-Tac2-P2A-GFP This paper N/A

pAAV-hSyn-DIO-hM3D(Gq)-mCherry Addgene 44361

pAAV-hSyn-DIO-mCherry Addgene 50459

Software and Algorithms

ImageJ NIH https://imagej.nih.gov/ij

Prism 6 GraphPad Software https://www.graphpad.com/

MATLAB MathWorks https://www.mathworks.com/

EthoVision XT Noldus http://www.noldus.com/

Looming Code, MATLAB Meister M., Caltech N/A

Behavior Annotator, MATLAB Perona P., Caltech N/A

Behavioral Analysis Code, MATLAB This paper N/A

Metamorph Technical Instrument http://www.techinst.com/

SiDirect 2.0 SiDirect 2.0 http://sidirect2.rnai.jp/

Other

Cannulae (guide, dummy, internal) Plastics One N/A

Microinfusion Pump Harvard Apparatus https://www.harvardapparatus.com/
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed and will be fulfilled by the Lead Contact, David J. Anderson (wuwei@

caltech.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Wild-type (WT) C57BL/6N male mice (experimental), C57BL/6N female mice (for sexual experience), and BALB/c male mice

(intruders) were obtained from Charles River (at 6-10 weeks of age). For visualization of Tac2 and Tac1 expression, we used previ-

ously described Cre-dependent Ai6-zsGreen and Ai14-tdTomato fluorescent reporter mice (Madisen et al., 2010), Tac2-IRES2-Cre

(Cai et al., 2014), and Tac1-IRES2-Cre knockin mice (obtained from the Allen Institute for Brain Science), which were backcrossed to

the C57BL/6N background in the Caltech animal facility. Tac2-IRES-Cre mice were used for Cre-dependent LOF/GOF experiments

(Figures 5 and 7). Animals were housed and maintained on a reverse 12-hr light-dark cycle with food and water ad libitum. Behavior

was tested during the dark cycle. Care and experimental manipulation of animals were in accordance with the National Institute of

Health Guide for Care and Use of Laboratory Animals and approved by the Caltech Institutional Animal Care and Use Committee.

Social isolation stress
WT males (Charles River) were housed in isolation (1 animal per cage), or in groups of 3. Tac2-IRES-Cre males (bred in-house) were

housed in isolation, or in groups of 2-5. Animals were isolated post-weaning, at 8-16 weeks of age. All cage conditions remained

otherwise identical for group housed mice compared to isolated animals, and mice were housed on the same rack in the same

vivarium. Except where otherwise indicated, social isolation was maintained for at least 2 weeks (this period was extended in the

case of surgical experiments, i.e., when adequate time for recovery and viral expression levels were required). All mice were between

12-20 weeks of age at the time of behavioral testing.

METHOD DETAILS

Viral constructs
The AAV2-EF1a-DIO-hM4D(Gq)-mCherry and AAV2-EF1a-DIO-mCherry were acquired from the University of North Carolina (UNC)

viral vector core. The pAAV-Tac2-shRNA1-CMV-zsGreen, pAAV-Tac2-shRNA2-CMV-zsGreen, and pAAV-shRLuc-CMV-zsGreen

plasmids were constructed (see construction below) and serotyped with AAV5 coat proteins and packaged in-house (see viral pack-

aging below). The pAAV-hSyn-Tac2-P2A-mCherry and pAAV-hSyn-Tac2-P2A-GFP plasmids were constructed (see below) and

packaged into AAV-PHP.B (see PHP.B section below). The pAAV-hSyn-DIO-hM3D(Gq)-mCherry and pAAV-hSyn-DIO-mCherry

were acquired from Addgene and packaged into AAV-PHP.B (see below).

Construction of small hairpin RNA expressing AAV vector
Small hairpin RNA (shRNA) for mouse Tac2 gene (NM_009312.2) were designed using the online designing tool siDirect 2.0 (http://

sidirect2.rnai.jp/) (Naito et al., 2009). Oligonucleotides encoding Tac2 shRNAs were purchased from IDT. Oligonucleotides used

were as follows: shRNA1, 50- CCGACGTGGTTGAAGAGAACACCGCTTCCTGTCACGGTGTTCTCTTCAACCACGTCTTTTTT �30

and 50- AAAAAAGACGTGGTTGAAGAGAACACCGTGACAGGAAGCGGTGTTCTCTTCAACCACGTCGG �30; shRNA2, 50- CCGC

CTCAACCCCATAGCAATTAGCTTCCTGTCACTAATTGCTATGGGGTTGAGGCTTTTTT �30 and 50- AAAAAAGCCTCAACCCCATAG

CAATTAGTGACAGGAAGCTAATTGCTATGGGGTTGAGGCGG �30

pAAV.H1.shRLuc.CMV.ZsGreen.SV40 (Luc shRNA) plasmid (PL-C-PV1781, Penn Vector Core) was used as shRNA AAV vector

backbone and control shRNA construct. Entire Luc shRNA plasmid except luciferase shRNA sequence was amplified by PCR

with the following primers: shRNA1, Forward - AACCACGTCTTTTTTAATTCTAGTTATTAATAGTAATCAA; Reverse - CTTCAA

CCACGTCGGCTGGGAAAGAGTGGTCTC; shRNA2, Forward - GGTTGAGGCTTTTTTAATTCTAGTTATTAATAGTAATCAA ; Reverse

- ATGGGGTTGAGGCGGCTGGGAAAGAGTGGTCTC. All PCR reactions were performed using PrimeSTAR Max DNA Polymerase

(Takara Bio, Kusatsu, Japan). After PCR amplification, template plasmid was digested by DpnI (NEB, Ipswich, MA) and PCR

amplicons were ligated with annealed shRNA oligoes using GeneArt Seamless Cloning and Assembly Kit (Thermo Fisher Scientific,

Waltham, MA) following the manufacturer’s instruction.

Construction of Tac2-overexpression AAV vectors
Tac2-P2A-mCherry gene fragment was synthesized in the form of IDT gBlocks (see below*). pAAV-hSyn-Tac2-P2A-mCherry was

generated via ligation to AccI/NheI site of pAAV-hSyn-DIO-hM3D(Gq)-mCherry plasmid (Addgene #44361) using DNA Ligation Kit

MightyMix (TakaraBio, Kusatsu, Japan). To generate pAAV-hSyn-Tac2-P2A-GFPplasmid, the entire pAAV-hSyn-Tac2-P2A-mCherry

plasmid except the mCherry sequence was amplified by PCR with the following primers: Forward - CTCCTCGCCCTTGCTCAC;

Reverse - GGCGCGCCATAACTTCGTATAATG and GFP sequence was amplified from pAAV-GFP plasmid (AAV-400, Cell Biolabs

Inc,SanDiego,CA)with the followingprimers: Forward -CCTGGACCTATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTG;
e3 Cell 173, 1265–1279.e1–e8, May 17, 2018
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Reverse - AGCATACATTATACGAAGTTATGGCGCGCCCTACTTGAGCTCGAGATCTGAGTAC. Both PCR amplicons were treated

with DpnI (NEB) and ligated together using GeneArt Seamless Cloning and Assembly Kit (Thermo Fisher scientific) following the man-

ufacture’s instruction.

*Synthesized Tac2-P2A-mCherry gene fragment:

GCTAGCGCCACCATGAGGAGCGCCATGCTGTTTGCGGCTGTCCTCGCCCTCAGCTTGGCTTGGACCTTCGGGGCTGTGTGTG

AGGAGCCACAGGGGCAGGGAGGGAGGCTCAGTAAGGACTCTGATCTCTATCAGCTGCCTCCGTCCCTGCTTCGGAGACTCTAC

GACAGCCGCCCTGTCTCTCTGGAAGGATTGCTGAAAGTGCTGAGCAAGGCTTGCGTGGGACCAAAGGAGACATCACTTCCACAG

AAACGTGACATGCACGACTTCTTTGTGGGACTTATGGGCAAGAGGAACAGCCAACCAGACACTCCCACCGACGTGGTTGAAGAG

AACACCCCCAGCTTTGGCATCCTCAAAGGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAA

CCCTGGACCTATGGTGAGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGGAGG

GCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGA

AGGTGACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTACGTGAAG

CACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGG

CGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTC

CCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGGCGCCC

TGAAGGGCGAGATCAAGCAGAGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGGCCAA

GAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACAACGAGGACTACACCATCGTGG

AACAGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGACGAGCTGTACAAGTAAGGCGCGCCATAACTTCGTATA

ATGTATGCTATACGAAGTTATTAAGAGGTTTCATATTGCTAATAGCAGCTACAATCCAGCTACCATTCTGCATAACTTCGTATAAAG

TATCCTATACGAAGTTATTCCGGAGTCGAC

Viral packaging
rAAVs were produced by polyethylenimine (PEI) triple transfection of HEK293T cells. Briefly, 40mg of equi-molar pHelper, pXR5 and

pAAV-trans DNA plasmids were mixed with 120ml of 1mg/ml Polyethylenimine HCl MAX (Polysciences) in PBS and incubated at RT

for 5 minutes. 90% confluent HEK293 cells grown on 15cm tissue culture plates were transfected with the plasmid/PEI mixture. Cells

were collected 72 hours post transfection, freeze-thawed 3 timed and incubated with Benzonase (Millipore) at 5 units/mL for 1 hour.

The solution was then centrifuged at 5000xg for 20 minutes. The supernatant was layered on top of a discontinuous gradient of

iodixanol and centrifuged at 200,000xg for 2 hours at 18�C. The 40% iodixanol fraction was collected, concentrated, and buffer

exchanged with PBS using a Millipore 100kD centrifugal filter. AAV genomic titers were determined by real-time PCR using primers

against the ITR and normalized by dilution with PBS to 1x1012 genome copies per mL virus.

AAV-PHP.B production and intravenous administration
The AAV-hSyn-DIO-Tac2-P2A-mCherry, AAV-hSyn-DIO-Tac2-P2A-GFP, AAV-hSyn-DIO-hM3D-mCherry, and AAV-hSyn-DIO-

mCherry recombinant AAV genomes were separately packaged into the AAV-PHP.B capsid by triple transfection of HEK293T cells

and purified with iodixanol step gradients as previously described (Deverman et al., 2016). 5x1011 vector genomes (vg) of each virus

was administered intravenously (via the retro-orbital sinus) to Tac2-Cre animals individually, or in combination. To equalize the

amount of virus given to each mouse, 5x1011 vg of AAV-PHP.B-hSyn-DIO-mCherry was administered to each animal to bring

them up to the amount injected in the double Tac2+hM3DREAAD group. Each animal received a total vector dose of 1x1012 vg.

Surgery and cannula implants
Mice 8-16 weeks old were anesthetized with isoflurane and mounted in a stereotaxic apparatus (Kopf Instruments). Anesthesia was

maintained throughout surgery at 1%–1.5% isoflurane. The skull was exposed and small burr holes produced dorsal to each injection

site using a stereotaxic mounted drill. Virus was backfilled into pulled fine glass capillaries (�50 mm diameter at tip) and pressure

injections of 300nl were made bilaterally into either the dBNSTa (AP +0.25, ML ± 0.85, DV �4.1), DMH (AP �1.3, ML ± 0.35, DV

�5.6), or CeA (AP �1.4, ML ± 2.6, DV �4.73) at a rate of 30nl per minute using a nanoliter injector (Nanoliter 2000, World Precision

Instruments) controlled by an ultra microsyringe pump (Micro4, World Precision Instruments). Capillaries remained in place for

5 minutes following injections to allow for full diffusion of virus and to reduce backflow up the injection tract. Skin above the skull

was then drawn together and sealed with GLUture (Zoetis). For bilateral cannula implantations, single or double guide cannula

(custom, Plastics One) aimed 0.5mm above each region were implanted and held in place with dental cement (Parkell). Compatible

dummy cannulas with a 0.5mm protrusion at the tip were inserted to prevent cannula clogging. Directly following surgery, mice were

given a subcutaneous injection of ketoprofen (2mg/kg) and supplied with drinking water containing 400mg/L sulphamethoxazole and

200mg/L ibuprofen andmonitored for 7 days. Dummieswere replaced every 2-3 days to keep cannula tracts clean. All injectionswere

subsequently verified histologically.

Immunohistochemistry
Immunofluorescence staining proceeded as previously described (Anthony et al., 2014; Cai et al., 2014; Hong et al., 2014; Kunwar

et al., 2015). Briefly, mice were perfused transcardially with 0.9% saline followed by 4% paraformaldehyde (PFA) in 1XPBS. Brains

were extracted and post-fixed in 4% PFA overnight at 4�C followed by 48 hours in 15% sucrose. Brains were embedded in OCT
Cell 173, 1265–1279.e1–e8, May 17, 2018 e4



mounting medium, frozen on dry ice, and stored at�80�C for subsequent sectioning. Sections 40-50 mm thick were cut on a cryostat

(Leica Biosystems). Sections were either directly mounted onto Superfrost slides for histological verification of injections/cannula

placements or were cut free floating for antibody staining. For antibody staining, brain sections were washed 3X in 1XPBS and

blocked in PBS-T (0.3% Triton X-100 in 1XPBS) with 10% normal goat or donkey serum for 1hr at room temperature (RT). Sections

were then incubated in primary antibody diluted in blocking solution at 4�C for 48-72 hours. We stained for neurokinin B (rabbit anti-

proNKB; 1:1000; Invitrogen); the glial marker nuclear factor I-A (rabbit anti-mouseNFIA; 1:1000; Deneen lab) (Deneen et al., 2006); the

oligodendrocyte marker proteolipid protein (chicken anti-PLP; 1:1,000; Millipore) or the nuclear marker NeuN (rabbit anti-NeuN;

1:1000; Millipore). Sections were then washed 3X and incubated in secondary antibodies diluted in blocking buffer (goat anti-rabbit,

goat anti-chicken, Alexa Fluor 594, 1:500) overnight at 4�C. Sections were then washed 3X, incubated for 20 minutes at RT in DAPI

diluted in 1XPBS (1:2000) for counterstaining, washed again, mounted on Superfrost slides, and coverslipped for imaging on a

confocal microscope (Olympus FluoView FV1000).

Fluorescent in situ hybridization
Digoxigenin (DIG)-labeled Tac2, Cfos, Crh RNA probes and dinitrophenyl (DNP)-labeled Tac2 probe were generated following a pre-

viously described protocol (http://help.brain-map.org/display/mousebrain/Documentation) (Lein et al., 2007) with the following

primer sets: Tac2; Forward - AGCCAGCTCCCTGATCCT; Reverse -

TTGCTATGGGGTTGAGGC

(NM_009312.2, 36-608bpCfos; Forward - agaatccgaagggaacgg andReverse - ggaggccagatgtggatg (NM_010234.2, 560-1464bp)

Crh; Forward - agggaggagaagagagc and Reverse agccacccctcaagaatg (NM_205769.3, 219-1185bp). Fluorescent in situ hybridiza-

tion (FISH) or double fluorescent in situ hybridization (dFISH) was carried out according to the protocol used in (Thompson et al.,

2008) with modifications. Briefly, mice were transcardially perfused with 1 x PBS followed by 4% paraformaldehyde/PBS (PFA) in

1 x PBS. Brains were fixed in 4% PFA 3-4 hours at 4�C and cryoprotected for overnight in 15% sucrose at 4�C. Brains were

embedded in OCTCompound (Fisher Scientific) and cryosectioned in 30 mm thickness andmounted on Superfrost Plus slides (Fisher

Scientific). Sections were fixed in 4% PFA for 30 min, acetylated with 0.25% acetic anhydride in 0.1 M triethanolamine for 10 min,

dehydrated with increasing concentrations of EtOH (50, 70, 95 and 100%), gently treated with proteinase K (6.3 mg/mL in 0.01M

Tris-HCl pH7.4 and 0.001M EDTA) for 10 min, and fixed in 4% PFA for 20 min. All procedures were performed at room temperature

(RT). The hybridization buffer contained 50% deionized formamide, 3 3 standard saline citrate (SSC), 0.12 M PB (pH 7.4), 10%

dextran sulfate, 0.12 mg/ml yeast tRNA, 0.1 mg/mL calf thymus DNA, and 1x Dehardt solution. The sections were prehybridized

at 63�C in hybridization buffer for 30 min and then hybridized with RNA probes (300ng/ml for each probe) in hybridization buffer

at 63�C for 16 hours. After hybridization, the sections were washed with 5 3 SSC for 10 min, 4x SSC / 50% formamide for

20 min, 2x SSC / 50% formamide for 30min, and 0.1x SSC for 20min twice each at 61�C. The sections were blocked with 4% sheep

serum in TNT buffer (Tris-HCl pH7.5, 0.15 M NaCl and 0.00075% tween 20) for 30 min and TNB Blocking buffer (TSA blocking re-

agent, PerkinElmer, Waltham, MA) for 30 min at RT. The sections were incubated with anti-digoxigenin-POD antibody (1:600, Roche

Diagnostics) in TNB buffer overnight at RT. The sections were washed with TNT buffer and tyramide-biotin signal amplification was

performed using the TSA Plus Biotin Kit (PerkinElmer) and signals were visualized after 1 hr incubation with Alexa Fluor 594 Strepta-

vidin (Jackson ImmunoResearch) or Alexa Fluor 488 Streptavidin (Invitrogen) at RT. The sections were washed with TNT buffer and

fixed with 4% PFA for 20 min at RT, washed with PBS, blocked with avidin/biotin blocking kit (Vector), and then treated with 0.3%

H2O2 for 15 min at RT. Subsequently, the sections were washed with PBS, blocked with TNB blocking buffer for 20 min at RT, and

incubated with anti-DNP HRP conjugated antibody (1:250, PerkinElmer) in TNB blocking buffer overnight at RT. On the following day,

the sections were washed with TNT buffer and tyramide-DNP signal amplification was performed using the TSA Plus DNP (HRP) Kit

(PerkinElmer) and signals were visualizedwith Anti-DNPAlexa Fluor 488 conjugated antibody (1:125, Invitrogen) at RT. Sections were

counterstained with DAPI (0.5ug/mL in PBS), washed with 1 x PBS, and coverslipped using Fluoro-Gel with Tris Buffer (Electron Mi-

croscopy Sciences). Tissue images of entire coronal brain sections were taken using a slide-scanner (VS120-S6-W, Olympus) or a

confocal microscope (FluoView FV1000, Olympus) and cells positive for the probes were counted as described below.

Cell counting
Following confocal or slide-scanner imaging, quantification of labeled cells was performed using ImageJ andMetamorph. Cells were

counted by an observer blind to experimental conditions. Brain images were converted to greyscale (16-bit) in ImageJ and adjusted

using automatic thresholding and watershed separation. Cells were either counted automatically using ImageJ’s particle analysis

algorithm (random sections were counted manually to cross-check that automated scoring was consistent with manual human

scoring); otherwise, cells were counted manually using MetaMorph. Cells that were not entirely contained within a given region of

interest (ROI) were excluded from analyses. Relative fluorescent intensities (for cell body or projection terminal labeling with a

fluorescent protein) were measured automatically using MetaMorph for a given ROI. Raw cell counts within an ROI were divided

by the size of the ROI (mm2) to produce the number of positively labeled cells/mm2.

Quantitative real-time reverse transcription PCR
Group housed or isolated (30minutes, 24 hours, 2 weeks)micewere decapitated and brains were quickly removed and placed in RNA

Later (QIAGEN) at 4�C. Tissue from dBNSTa, DMH, CeA, ACC, and dHPC was micro-dissected and placed in RNA Later. Tissue was
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then homogenized and RNA purified using an RNAeasy Plus Mini Kit (QIAGEN). 150ng of total RNA/region/condition was then incu-

bated with 3ml of Turbo DNase, 1ml of Murine RNase Inhibitor, in 1X Turbo DNase buffer for 15minutes at 37�C to remove any contam-

inating genomic DNA. Sampleswere subsequently purified using DynabeadsMyOne Silane beads and eluted in 11 ml. The eluted RNA

was used as input into a 20ml reverse transcriptase reaction (SuperScript III). 1ml of 100mM random 9mers (NNNNNNNNN - IDT

corporation) served as primers. The reverse transcriptase reaction was inactivated at 70�C prior to qPCR analysis on the LightCycler

480 Instrument II. The following primers, ordered from Integrated DNA Technologies, were used: Tac1 (Forward – GATGAA

GGAGCTGTCCAAGC; Reverse – TCACGAAACAGGAAACATGC); Tac2 (Forward– GCCATGCTGTTTGCGGCTG; Reverse – CCTTG

CTCAGCACTTTCAGC); GAPDH (Forward –TGAAGCAGGCATCTGAGGG; Reverse – CGAAGGTGGAAGAGTGGGAG); and 18 s

(Forward – GCAATTATTCCCCATGAACG; Reverse – GGGACTTAATCAACGCAAGC). GAPDH and 18S ribosomal RNA served as

housekeeping genes to which Tac1 and Tac2 were normalized. Primers were resuspended in ddH20 to 100mM. A 25mM mix of

each primer was used as input for qRT-PCR reaction. Four technical replicates were run for each sample primer pair and the Cp

(Crossing Point) value was determined using Lightcycler II Software. The median value of the four technical replicates was used as

the representative value for the set. Final mRNA fold increase valueswere determined by normalizing raw fluorescent values of exper-

imental animals to controls using the following formula: 2̂ (Cycles Control - Cycles Experimental). Thus for example, if the control sample

required 8 cycles and the experimental sample 3 cycles to reach the Cp, then the fold-increase for experimental/control would be

2(8-3) = 25 = 32-fold.

Resident intruder assay
Testing for aggression using the resident intruder assay (Blanchard et al., 2003) proceeded as previously described (Hong et al.,

2014, 2015; Lee et al., 2014). Briefly, experimental mice (‘‘residents’’) were transported in their homecage to a novel behavior testing

room (cagemates in group housed mice were removed from the homecage prior to transport for this and all other behavioral tests),

where they acclimated for 5-15 minutes. Homecages were then slotted into a customized behavioral chamber lit with a surround

panel of infrared lights and equipped with two synchronized infrared video cameras (Pointgrey) placed at 90-degree angles from

each other to allow for simultaneous behavior recording with a front and top view. Synchronized video was acquired using Hunter

4.0 software (custom, Pietro Perona lab, Caltech). Following a two-minute baseline period, an unfamiliar male BALB/c mouse

(‘‘intruder’’) was placed in the homecage of the resident for 10 minutes and mice were allowed to freely interact. Group housed

BALB/cmales were used as intruders because they are a relatively submissive strain, thereby reducing any intruder initiated fighting.

Behavior videos were hand annotated by an observer blind to experimental conditions (Behavior Annotator, Piotr’s MATLAB toolbox;

https://pdollar.github.io/toolbox/). Fighting bouts were scored on a frame-by-frame basis and were defined as a frame in which the

resident male was currently engaged in an episode of biting or intense aggressive behavior immediately surrounding a biting episode.

Annotation files were then batch analyzed for behavior, including number of fighting bouts, using in-house customized programs in

MATLAB (A. Kennedy, Caltech).

Looming disk assay
Freezing behavior to presentation of an overhead looming disk proceeded as previously described (Kunwar et al., 2015; Yilmaz and

Meister, 2013). Briefly, mice were transported to a novel behavioral testing room. After 5 minutes of acclimation, mice were placed

inside a novel, custom-built open top Plexiglas arena (48 3 48 3 30 cm) covered with a flat screen monitor placed directly above

and illumination provided by infrared LEDs (Marubeni). Mice were given a 5minute baseline period in the arena, following which entry

into the center of the arena triggered presentation of a single, 10 s overhead looming disk stimulus (comprised of a single looming disk

presentation 0.5 s in duration, which was repeated 10 times with an inter-stimulus interval of 0.5 s). The stimulus was controlled by

custom MATLAB code (M. Meister, Caltech) run on dedicated computer in an adjacent room. Mice remained in the area for an

additional 2 minutes before being transported back. Behavior was recorded using a video recorder attached to a laptop equipped

with video capture software (Corel VideoStudio Pro). Acute freezing behavior to the looming disk (‘‘during’’), as well as in the 30 s

following the last disk (‘‘post’’) were scored manually (Behavior Annotator, MATLAB) by an observer blind to environmental

conditions.

Tone fear conditioning and shock reactivity
The protocol for tone trace fear conditioning occurred as previously described (Cushman et al., 2014) in fear conditioning boxes pre-

viously described in detail (Haubensak et al., 2010; Kunwar et al., 2015). Briefly, mice were transported in squads of four on a white

cart to a novel behavioral testing room containing 4, sound-attenuating fear-conditioning chambers (Med Associates). This ‘‘training

context’’ was comprised of flat grid flooring (wired to a shock generator and scrambler for footshock delivery, Med Associates),

houselights, and the presence of an internal fan for background noise. Chambers were sprayed with a 70% Simple Green solution

on the underlying chamber pan to generate a unique contextual scent and chambers were cleaned with 70%EtOH between squads.

Trace fear conditioning consisted of a 3 minute baseline period followed by 3 tone-shock trials consisting of a 20 s tone conditional

stimulus (CS; 75dB, 2800 Hz), a 20 s trace interval and a 2 s footshock unconditional stimulus (US; 0.7mA). The inter-trial interval (ITI)

between trials was 60 s. Mice remained in the chambers an additional 60 s before transport back to the vivarium. The following day,

mice were transported in fresh cardboard boxes to a novel behavioral testing room consisting of 4 distinct fear-conditioning boxes to

test for tone fear. The ‘‘test context’’ consisted of the houselights and fan turned off, uneven grid flooring, a 1% acetic acid scent and
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a black plastic insert used to generate a triangular roof. Testing occurred identical to training with the exception that shocks were

omitted from test trials to allow for behavior assessment to the tone. A single shock was administered in the last minute of testing

to assess activity burst responding to the shock. This allowed us to assess reactivity to the shock under our various manipulations

performed at test without disrupting fear acquisition by performing manipulations during training. All experimental manipulations

and data displayed in the manuscript were performed during the test phase of fear conditioning (training data not shown). Training

and testing context were counterbalanced across mice. Freezing behavior during the baseline period as well as during each tone

presentation (‘‘during’’) and trace interval (‘‘post’’) were assessed as previously described (Zelikowsky et al., 2014) using automated

near-infrared video tracking equipment and computer software (VideoFreeze, Med Associates). Shock reactivity (motion, arbitrary

units) was measured during the 2 s shock US as well as the 3 s immediately following. Acute footshock stress (Figures S3L–S3M)

was generated by delivering 4 unsignaled administrations of a 2 s, 0.7mA footshock following a 3 minute baseline period. The ITI

was 90 s.

Ultrasonic sound stimulus assay
Behavior was tested as previously described (Mongeau et al., 2003). Briefly, mice were brought into a novel experimental testing

room in their homecages and allowed to acclimate for 5 minutes. Behavior in the homecage to an ultrasonic sound stimulus

(USS) was then recorded using a digital video camera connected to a portable laptop equipped with video capture software (Corel

VideoStudio Pro). Mice received a two-minute baseline period behavior followed by three, 1 minute presentations of the USS (100ms

frequency sweeps between 17 and 20 kHz, 85 dB, alternately ON 2 s/OFF 2 s) with a 1-minute inter-trial interval. Following testing

mice were returned to the vivarium. Freezing behavior to each USS and post-USS period (ITI) was manually scored by an observer

blind to experimental conditions (Behavior Annotator, MATLAB).

Open field test
Open field testing (OFT) occurred as previously described (Anthony et al., 2014; Cai et al., 2014; Kunwar et al., 2015) to examine

anxiety-like behavior (thigmotaxis) in a novel open arena. Briefly, mice were brought into a novel behavior testing room in squads

of 4. They were then individually placed in plastic open top arenas (50 X 50 X30cm) and allowed to freely move for a 10minute period.

Video was captured using an overhead mounted video camera connected to a dedicated computer in an adjacent room equipped

with Mediacruise (Canopus) video capture software. Ethovision software was used to generate trajectory maps and analyze time

spent in the center of the arena (center 50%) and average velocity.

Elevated plus maze
Elevated plus maze (EPM) testing occurred as previously described (Cai et al., 2014; Kunwar et al., 2015). Briefly, mice were brought

into a behavioral testing room and tested for anxiety-like behavior on an elevated plus maze. The EPM was comprised of a platform

(74cm above the floor) with four arms – two opposing open arms (30 3 5cm) and two opposing closed arms (30 3 53 14cm). Mice

were placed in the center of the EPMand their behavior was tracked for 5minutes usingMediacruise (Canopus) for video capture and

Ethovision for trajectory maps, analyses of time spent in each arm, and number of entries. Mice were also scored for whether or not

they jumped off of the center of the platform within 5 s of being initially placed on the EPM.

Acoustic startle response
Startle responding to an acoustic stimulus (Koch, 1999) was measured using a startle chamber (SR-LAB; San Diego Instruments) as

previously described (Shi et al., 2003). Briefly, mice (in squads of 3) were brought into a novel behavioral testing room in their

homecages and allowed to acclimate for 5�10 minutes. Mice were then placed into sound-attenuating startle chambers comprised

of a Plexiglas cylinder (5.1cm diameter) mounted on a platform (20.4 3 12.7 3 0.4 cm) with a piezoelectric accelerometer unit

attached below to detect startle motion. The chambers contained an overhead loudspeaker and light. Following a 3 minute baseline,

mice were presented with a series of 8 noise presentations ramping up from 67-124dB (67, 78, 86, 95, 104, 109, 115, 124dB) across a

4minute period (�30 s variable inter-trial interval; ITI). The delivery of acoustic stimuli and acquisition of startle motion was controlled

by SR-LAB software on a dedicated computer. Prior to each behavioral testing session, sound levels were calibrated with a sound-

level meter (Radio Shack), and response sensitivities were calibrated using the SR-LAB Startle Calibration System. Startle chambers

were cleaned with 70% EtOH between squads.

Flinch-vocalize-jump assay
Sensitivity to a noxious footshock stimulus was assessed using the flinch-vocalize-jump assay (Kim et al., 1991). Mice were trans-

ported to a behavioral testing room and individually tested in a fear conditioning box (Med Associates) for reactivity to a series of

manually delivered shocks ramping up in amplitude. Shocks were administered every 5 s beginning from 0.05 mA until 0.6 mA,

with each shock increasing by 0.05 mA. The shock intensity level at which the mouse displayed flinching (first perceptible reaction

to the shock), vocalization (sound audible to a human observer), and jumping (simultaneous lifting of all 4 paws off the grid) was noted

for each mouse.
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Social interaction assay
Mice were tested for interactive behavior toward a novel mouse using the social interaction assay. Behavior proceeded as previously

described (Hsiao et al., 2013). Briefly, mice were brought to a behavioral testing room in squads of 4 and individually placed in a long

Plexiglass apparatus (50 3 75 cm) consisting of three chambers – a center chamber and two side chambers each containing an

empty pencil cup flipped upside-down. Following a 5 minute baseline period, an unfamiliar male mouse (BALB/c) was placed under

one pencil cup, and a novel object (50 mL falcon tube cut in half) was placed under the other (placements counterbalanced across

mice). Sociability across a 10 minute time period was assessed. Video was captured using an overhead mounted video camera

connected to a dedicated computer in an adjacent room equipped with Mediacruise (Canopus) video capture software. Ethovision

software (Noldus) was used to analyze time spent in each chamber and generate an output file containing information on

XY coordinates (location). XY coordinates were then used to generate heatmaps reflecting the amount of time spent at each location

in the social interaction apparatus (MATLAB).

Rat exposure assay
Behavior was tested as previously described in Kunwar et al. (2015). Briefly, mice were tested for behavior toward an intact rat pred-

ator (Blanchard et al., 2005) weighing 300–500 g. Mice were brought in their homecage into a novel testing environment. Behavior

was recorded using a digital video camera attached to a portable laptop running video acquisition software (Corel VideoStudio

Pro). Following a 3 minute baseline period, a rat was lowered onto one side of the mouse’s homecage in a custom-made mesh

enclosure (163 113 15 cm) for a 5minute time period. In order to assesswhere themouse spent its time, the home cagewas divided

into three equal zones with Zone 1 being closest to the rat and Zone 3 farthest. Time spent in each zone as well freezing behavior (not

shown) was calculated using EthovisionXT software (Noldus).

Pharmacology
Mice were administered the Nk3R antagonist osanetant (Axon Medchem, Axon 1533) either systemically or intra-brain region.

Osanetant was dissolved in saline with 0.1% Tween 20 (vehicle). For systemic administration mice received an intraperitoneal

(i.p.) injection (5 mg/kg) 20 minutes prior to behavioral testing. For microinfusions, guide cannula were removed from mice

and replaced with injector cannula (Plastics One), which protruded 0.5mm from the tip of the guide cannula. Injectors were attached

to 5 mL Hamilton syringes with PE tubing (Plastics One) and mounted on a microinfusion pump (Harvard Apparatus) for controlled

bilateral infusion of osanetant (0.3 mL vehicle with 375 ng dose per site injected across 6 minutes). In a separate experiment, mice

were administered the Nk3R agonist, Senktide (Tocris, 1068). Senktide was dissolved in saline and injected i.p. (2mg/kg) 20 minutes

prior to behavioral testing. For experiments using systemic administration of clozapine-N-oxide (CNO), CNO (Enzo Life Sciences-

Biomol, BML-NS105-0005) was dissolved in saline (9 g/L NaCl) and injected (i.p.) at 5 mg/kg for hM4DREADD silencing or 2 mg/

kg for hM3DREADD activation 20 minutes prior to behavioral testing. CNO was also administered chronically in drinking water

(0.5mg CNO/100ml water).

QUANTIFICATION AND STATISTICAL ANALYSIS

All behavioral data was scored by a trained observer blind to experimental conditions, or scored using an automated system

(Ethovision, Med Associates). Data were then processed and analyzed using MATLAB, Excel, Prism 6, and G*Power. Statistical

analyses were conducted using ANOVAs followed by Bonferroni post hoc tests, Fisher’s LSD tests, and unpaired t tests when appro-

priate. The n value, the mean values ± SEM for each dataset, and statistically significant effects are reported in each figure/figure

legend. The significance threshold was held at a = 0.05, two-tailed (not significant, ns, p > 0.05; *p < 0.05; **p < 0.01;

***p < 0.001). Full statistical analyses corresponding to each dataset, including 95% confidence intervals (CIs) and effect size (h2),

are presented in Table S1.
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Figure S1. Prolonged SIS Alters Subsequent Social and Asocial Behavior, Related to Figure 1

(A) SIS or GH mice (n = 8 mice/condition) were tested in various behavioral assays (see Figure 1E). Tone fear acquisition curves showing baseline freezing to the

conditioning context averaged across three minutes followed by freezing to each of three tones (30 s) prior to shock administration. Acquisition rate and final

asymptotic values were not different between housing conditions.

(B) Left panel, baseline freezing to the tone fear test context averaged across the three minutes of context exposure prior to the initial tone (related tone test data

presented in Figure 1H). No significant generalized freezing to the test context in either group was observed. Right panel, breakdown of freezing to each tone (30

s, ‘‘during’’) and each trace interval (20 s, ‘‘post’’). Freezing in SIS mice persisted into each trace interval (see Figure 1H for averaged values).

(C) A novel, naive cohort of SIS or GH mice (n = 5-6 mice/condition) were tested on the looming disk assay without any prior behavior testing to control for order

effects of testing after the resident intruder assay (see Figure 1E). SIS mice froze significantly more during the post period following presentation of the loom-

ing disk.

(D) A novel, naive cohort of SIS or GHmice (n = 8mice/condition) underwent tone fear conditioning without any prior behavior testing to control for order effects of

testing after the resident intruder and looming disk assays (see Figure 1E). SIS mice froze significantly more during the post period following presentation of

the tone.

(E) Tail rattles during the overhead looming disk assay were elevated in isolated mice (see Figure 1G for looming data).

(legend continued on next page)



(F) The percent of mice that jumped off of the EPM within 5 s of initial placement in the center of the maze. EPM open versus closed-arm time data presented in

Figure 1N.

(G) Mice that had been tested on the USS assay (Figure 1J) were tested in a rat exposure assay. GH mice spent significantly more time in the zone farthest away

from the rat compared to the other zones. This preference for the ‘‘far’’ zone was absent in SIS mice.

(H and I) SIS or GH mice (n = 8 mice/condition) were tested in the flinch-vocalization-jump assay (H) and the acoustic startle assay (I) to measure reactivity to

noxious stimuli presented at varying intensities. SIS mice showed flinch responding to footshocks of a lower magnitude (milliamp, mA) compared to GHmice (H).

Startle responding to a white noise auditory stimulus was enhanced in SIS animals, even at sound decibel (dB) intensities that were sub-threshold for eliciting

startle (I).

(J) SIS or GH mice (n = 8 mice/condition) were tested in the social interaction assay. SIS mice spent significantly less time in the zone containing a novel naive

mouse in a pencil cup (left graph), but showed a shorter latency to initially enter the zone containing the mouse (right graph). Representative heatmaps (right

panels) reflecting time spent in each location of the interaction apparatus (red, maximum time; dark blue, minimum time) for a GH (top) or SIS (bottom) mouse.

In this and in all subsequent figures, *p < 0.05, **p < 0.01, ***p < 0.001. Bars without asterisks did not reach significance (p > 0.05). ANOVA’s, F’s, and t values as

well as additional statistical information for this and subsequent supplemental figures can be found in Table S1. Data are represented as mean ± SEM.



B

F

E

C

G

H

A

D

I

(legend on next page)



Figure S2. SIS Produces an Increase in Tac2 Expression, Related to Figure 2
(A) Tac2-IRES-Cre and Tac1-IRES-Cre mice were crossed to Ai6-zsGreen reporter mice (see Figures 2C and 2D). Whole, intact brains photographed under

ambient lighting show increased zsGreen fluorescence present in isolated Tac2-IRES-Cre; Ai6-zsGreen mice (left panels) but not isolated Tac1-IRES-Cre; Ai6-

zsGreen mice (right panels) or group housed mice.

(B) Representative coronal sections through dBNSTa, DMH, CeA, and ACC (top to bottom) illustrating Tac2-dependent zsGreen expression in GH (left panels)

versus SIS mice (right panels). Quantification of zsGreen+ cell counts (left) and average fluorescence (right) are presented alongside each respective region.

Counts/fluorescence were restricted to each region as outlined (white dashed line). SIS produced significant increases in zsGreen expression across regions.

(C) Coronal images of Tac2-IRES-Cre; Ai6-zsGreen female mice illustrating that zsGreen expression is increased in females as well as in males.

(D) ZsGreen+ cells in the dBNSTa co-labeled with the neuronal marker NeuN, the glial marker nuclear factor I-A (NFIA) and the oligodendrocyte marker proteolipid

protein (PLP) (left to right). Coronal sections and percentage of zsGreen+ cells that are double labeled with each respective marker in GH (top) compared to SIS

mice (bottom) (n = 2-4 mice/condition; 3-4 sections/mouse). Upregulation of Tac2/zsGreen occurred preferentially in neurons.

(E) Tac2-IRES-Cre mice were crossed to Ai14-tdTomato reporter mice and group housed or isolated to confirm that the SIS-induced increase in zsGreen

expression was not an artifact due to the reporter mouse (n = 4 mice/condition). Representative coronal sections illustrating increased Tac2-tdTomato

expression.

(F and G) Mice were group housed or isolated for 2 weeks, 24 hr, or 30 minutes (n = 4 mice/condition), and tissue for each indicated region was dissected and

processed for qRT-PCR analyses. Quantification of fold increases in Tac2 (F) or Tac1 (G) mRNA revealed significant increases in Tac2, but not Tac1, following

2 weeks of SIS. Data from the GH versus 2 week condition are also presented in Figures 2E and 2F and are included here for comparison purposes.

(H) Breakdown of expression of Tac2 mRNA in the different sub-compartments of CeA including the medial (CeM), lateral (CeL), and central (CeC) sub-divisions

(n = 3-4mice/condition; 3-4 sections/mouse). SISmice showed a significant increase in Tac2mRNA expression in both the CeM and CeL subregions (counts, left

panel; representative image of SIS mouse, right panel). Data related to Figures 2I–2N.

(I) Neurokinin B (NkB) immunoreactivity in dBNSTa, DMH and CeA following 2 weeks of SIS compared to GH mice (n = 3 mice/condition, 1-2 sections/mouse).

Representative confocal image of NkB expression in the dBNSTa (right) and quantification of average fluorescence intensity per mm2 within each region (left)

show elevated NkB protein expression in SIS mice.

BLA, basolateral amygdala. AC, anterior commissure.
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Figure S3. Effects of Systemic Acute Osanetant on Behavior, Related to Figure 3

(A) Experimental protocol for B-E. Mice were group housed or isolated for 24 hr and tested in indicated behavioral assays.

(B–E) There was no significant difference between GH mice and mice isolated for 24 hr on any of the assays tested.

(F) Experimental protocol for G-I. Mice were group housed or isolated for 2weeks and tested on the indicated behavioral assays subsequent to an acute, systemic

injection of vehicle or osanetant.

(G) Number of tail rattles produced during the looming disk assay (see Figure 3C for looming data). SIS-induced tail rattles were attenuated by osanetant.

(H) The effects of acutely administered, systemic osanetant on social interaction (n = 6mice/condition). Osanetant attenuated SIS-induced reduction in time spent

in the social zone.

(I) The effects of osanetant on the acoustic startle assay (n = 8 mice/condition). Osanetant attenuated SIS-induced increased startle responses.

(J and K) Experimental protocol (J) to test whether osanetant also blocked aggression produced by 2 weeks of sexual experience (2 weeks of continuous co-

habitation with a female, no isolation). In contrast to the effect of osanetant to attenuate SIS-induced aggression, it had no effect to attenuate sexual experience-

induced aggression (K).

(L and M) Experimental protocol (L) to test the effects of osanetant to block shock-induced persistent freezing to the looming disk. All mice were exposed to 4

unsignaled footshocks and tested on the looming disk assay 24 hr later following an acute, systemic administration of vehicle or osanetant. Mice treated with

osanetant showed significantly reduced persistent freezing following presentation of the disk compared to vehicle mice (M).
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Figure S4. Local Nk3R Antagonism in dBNSTa, DMH, and CeA Blocks Dissociable Effects of SIS on Behavior, Related to Figure 4

(A) Representative sagittal sections illustrating Nk3R expression in the indicated regions (Mouse Brain Atlas, Allen Institute for Brain Science; Exp. 80342167).

(B–D) Representativewhole brain 3D images showing injection and projection pattern of a Cre-dependent eGFP viral tracer into the BNST (B), DMH (C), or CeA (D)

of Tac2-IRES-Cre mice. (Mouse Connectivity Atlas, Allen Institute for Brain Science; Exp’s. 265138021, 300927483, 241279261, respectively). See also Table S2

for projection target regions and density.

(E) The latency to orient to the looming stimulus was increased in SIS mice that had osanetant microinfused into DMH (related to Figure 4F).

(F–H) Reactivity to the footshock in SIS mice with osanetant microinfused into the indicated region. Only CeA osanetant blocked SIS-enhanced shock reactivity.

Data are related to Figures 4D, 4G, and 4J.

(I and J) The effect of osanetant microinfusions into the striatum or anterior cingulate cortex (ACC) on freezing behavior in the looming disk assay. No significant

effects were observed.
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Figure S5. Local Chemogenetic Silencing of Tac2+ Neurons Reduces the Effects of SIS, Related to Figure 5

(A) Experimental protocol. SISmice were subjected to the resident intruder assay (RI), the looming disk (LD), or tone fear conditioning and testing (FC). 30minutes

following behavioral testing, mice were sacrificed and brains were collected and processed using dFISH to examine co-expression of Tac2 and Cfos mRNA. SIS

and GH mice left in their homecage (HC) served as controls (n = 4 mice/condition; 3-7 sections/mouse).

(B–D) In comparison to SIS HC controls, SIS mice showed a significant increase in cells double labeled for Cfos and Tac2 in the dBNSTa following the LD or FC

assay (B), in the DMH following the RI assay (C), and in the CeA following LD and FC (D).

(E) Representative coronal sections of Cre-dependent hM4DREADD-mCherry viral expression in indicated regions of Tac2-IRES-Cre mice.

(F–H) hM4DREADD-driven chemogenetic silencing of Tac2+ neurons in CeA (H), but not dBNSTa (F) or DMH (G), attenuated SIS-enhanced shock reactivity. Data

related to Figures 5D, 5G, and 5J.

(I) Experimental protocol. WT, naive SISmicewere given an acute, systemic injection of CNOor saline prior to testing on the indicated behavioral assays to control

for any non-specific effects of CNO on behavior (n = 8 mice/condition) (see Figure 5).

(J–M) CNO did not significantly alter behavior on any of the assays tested.

(N) Tone fear test for SIS mice injected with AAV2-EF1a-DIO-hM4D-mCherry or AAV2-EF1a-DIO-mCherry control virus in the dBNSTa (n = 6-7 mice per con-

dition). CNO administered to hM4DREADD mice attenuated post-tone persistent freezing, while CNO administered to control mCherry virus-expressing mice

produced no significant effects in comparison to vehicle-treated animals.
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Figure S6. Local Tac2 Knockdown Attenuates the Effects of SIS, Related to Figure 6

(A–C)shRNAi-mediatedknockdownofTac2inCeA(C),butnotdBNST(A)orDMH(B),attenuatedSIS-enhancedshockreactivity.DatarelatedtoFigures6D,6G,and6J.

(D) Representative coronal sections of shRNA-2-zsGreen viral expression in indicated regions of WT mice (top panels). Lack of any significant difference in the

number of zsGreen+ cells (lower panels) between Tac2 shRNA virus-injected versus control (luciferase shRNA) virus-injected mice suggests that cell death is not

the cause of the Tac2 shRNA phenotypes.

(E–G) Efficacy of Tac2 shRNAs. Following behavior testing, brain sections and tissue taken from shRNA mice were processed for Tac2 mRNA using FISH or

qrtPCR to confirm knockdown of Tac2. Representative coronal images, Tac2 mRNA cell counts and intensity, and fold changes in Tac2 mRNA were performed

for all animals. Significant decreases in Tac2 mRNA were observed in dBNSTa (E), DMH (F), and CeA (G) (n = 6-7 mice per condition; 4-11 sections/mouse). Note

that shRNA-2 produces a stronger knockdown than shRNA-1 in many cases. Dashed white outlines indicate regions within which quantifications were made.
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Figure S7. Cre-Dependent CNS Expression from Intravenous Administration of AAV-PHP.B-Encoding GOF Effectors, Related to Figure 7

(A–E) Representative coronal sections to illustrate expression of the control virus mCherry (left panels), Tac2 cDNA-mCherry virus (center panels), or

hM3DREADD-mCherry virus (right panels) in the indicated regions of GH mice injected intravenously with the viruses. Quantification of the number of cells

expressing each virus per mm2 is presented alongside each region (right). Number of mCherry+ cells are low in ACC and dHPC because Tac2-Cre expression is

low in these regions in GH mice.

‘‘cc,’’ corpus callosum.

(F) SISmicewere sacrificed and brainswere processed using dFISH to assess Tac2 andCRHmRNA co-expression (n = 4-5mice/condition; 4-7 sections/mouse).

Tac2 (green) and CRH (red) co-label cells in dBNSTa and CeA, but not DMH. Representative images (left panels) and quantification (right) are shown.
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